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PERSPECTIVE / PERSPECTIVE

Interactions between hatchery and wild salmonids
in streams: differences in biology and evidence
for competition

Edward D. Weber and Kurt D. Fausch

Abstract: Competition between hatchery-reared and wild salmonids in streams has frequently been described as an
important negative ecological interaction, but differences in behavior, physiology, and morphology that potentially affect
competitive ability have been studied more than direct tests of competition. We review the differences reported, designs
appropriate for testing different hypotheses about competition, and tests of competition reported in the literature. Many
studies have provided circumstantial evidence for competition, but the effects of competition were confounded with
other variables. Most direct experiments of competition used additive designs that compared treatments in which hatch-
ery fish were introduced into habitats containing wild fish with controls without hatchery fish. These studies are appro-
priate for quantifying the effects of hatchery fish at specific combinations of fish densities and stream carrying
capacity. However, they do not measure the relative competitive ability of hatchery versus wild fish because the com-
petitive ability of hatchery fish is confounded with the increased density that they cause. We are aware of only two
published studies that used substitutive experimental designs in which density was held equal among treatments,
thereby testing for differences in competitive ability. Additional substitutive experiments will help managers to better
understand the ecological risk of stocking hatchery fish.

Résumé : La compétition entre les salmonidés de pisciculture et les salmonidés sauvages est fréquemment décrite
comme une importante interaction écologique négative; cependant, on a plus souvent étudi¢ les différences de compor-
tement, de physiologie et de morphologie qui affectent potentiellement la capacité de faire compétition que testé direc-
tement la compétition. Nous faisons une revue des différences signalées, des plans d’expérience appropriés aux diverses
hypotheéses concernant la compétition, ainsi que des tests de compétition décrits dans la littérature. Plusieurs études
fournissent des preuves indirectes de la compétition, mais les effets de la compétition ne sont pas séparés de ceux
d’autres variables. La plupart des expériences directes sur la compétition ont un plan d’expérience avec additions qui
compare des situations ou 1’on ajoute des poissons de pisciculture a des habitats contenant des poissons sauvages a des
situations témoins sans addition de poissons de pisciculture. Ces études sont adéquates pour quantifier les effets des
poissons de pisciculture a des combinaisons particulieres de densités de poissons et de stocks limites. Cependant, elles
ne mesurent pas la capacité relative de compétition des poissons de pisciculture par rapport aux poissons sauvages, car
la capacité de compétition des poissons de pisciculture est masquée par 1’augmentation de densité qu’ils causent. Seule-
ment deux études publiées, a notre connaissance, ont un plan d’expérience avec substitutions dans lequel les densités
sont maintenues constantes dans tous les traitements, si bien qu’elles mettent a 1’épreuve les différences de capacité de
compétition. De futures études de substitution permettront aux gestionnaires de mieux comprendre les risques écologi-
ques des empoissonnements avec des poissons de pisciculture.

[Traduit par la Rédaction]

Introduction hatchery-reared fish now make up large proportions of some

stocks (e.g., Flagg et al. 1995; Unwin and Glova 1997).

Hatcheries have played an important role in supporting Nevertheless, hatchery use has become increasingly contro-
the harvest and conservation of many salmonid species, and  versial because of the potential for negative interactions
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between hatchery-reared (hatchery) and naturally spawned
(wild) fish (White et al. 1995; Einum and Fleming 2001).
Stocked fish can negatively affect wild fish through genetic
contamination, predation, competition, induction of prema-
ture migration, mixed-stock exploitation problems, predator
attraction, and disease transmission (White et al. 1995).
However, the ecological effects of stocking hatchery fish on
their wild counterparts have received less attention than ge-
netic effects (e.g., Hindar et al. 1991; Busack and Currens
1995), even though ecological effects may be equally impor-
tant. Moreover, published studies on ecological interactions
have not demonstrated consistent results (Steward and Bjornn
1990; Fresh 1997), in part because many different experi-
mental designs have been used to test hypotheses that differ
subtly. Differences in behavior, morphology, and physiology
between hatchery and wild fish also likely affect the out-
come of ecological interactions such as competition. These
differences can be so great that Gross (1998) described
Atlantic salmon (Salmo salar) reared in wild versus aqua-
culture environments as “one species with two biologies”
and proposed that the two should be classified as separate
species.

In this perspective, we focus on competition between
hatchery and wild fish, because competition has frequently
been cited as an important negative ecological interaction
but has seldom been tested rigorously. We first discuss ge-
netic and environmental mechanisms that produce differences
in behavior, morphology, and physiology between hatchery
and wild fish that can affect competitive ability, and summa-
rize the differences that have been reported in the literature
(cf. Steward and Bjornn 1990; White et al. 1995). We then
describe weak versus strong evidence for competition be-
tween hatchery-reared and wild fish, experimental designs
appropriate for asking different questions about intraspecific
competition, and tests of competition reported in the litera-
ture. We conclude that most studies providing strong evi-
dence for competition were appropriate to quantify the effects
of specific hatchery programs on wild fish but not to answer
the general question of whether hatchery fish are more or
less competitive than wild fish. To clarify terms, we use
“wild” to mean fish that are progeny of parents that spawned
without human intervention and reared in natural environ-
ments, regardless of the origin of the parents, unless stated
otherwise. In many cases, stocked fish have successfully
spawned under natural conditions, resulting in wild progeny
that have been influenced genetically by fish culture.

Differences that potentially affect competitive
ability

Hatchery fish differ from their wild counterparts in that
their genetic makeup differs to varying degrees depending on
the broodstock used by the hatchery and because hatchery-
rearing environments are very different than natural streams.
Hatcheries typically rear fish at much higher densities than
encountered in streams, in lower current velocities, and us-
ing different foods and feeding regimes. Consequently, be-
havioral, morphological, and physiological differences may
arise in hatchery-reared fish because of differences in learn-
ing, expression of phenotypic traits, and genotypic selection,
compared with wild fish reared in natural environments. When
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interpreting studies that compare hatchery versus wild fish,
it is necessary to understand both their genetic background
and rearing environment, because different hypotheses can
be tested depending on how these factors are controlled. Be-
fore summarizing differences between hatchery and wild fish,
we describe how hatcheries create phenotypic and genetic
differences between the two groups and the different ques-
tions that can be tested depending on how genetic and envi-
ronmental factors are controlled in experiments.

Phenotypic differences between hatchery and wild fish
probably result from developmental responses to environ-
ment and learning (Fleming et al. 1997; Olla et al. 1998;
Einum and Fleming 2001) and from the lower early-life
mortality of hatchery fish (Swain et al. 1991; Fleming et al.
1994). Because a larger fraction of the initial cohort survives
in the hatchery, differences between wild and hatchery fish
may be caused by expression of traits in the hatchery that
would be selected against in the wild. That is, wild pheno-
types may be a subset of hatchery phenotypes (sensu Miller
1962; Fleming et al. 1994).

Genetic differences between hatchery and wild fish
(Hindar et al. 1991; Reisenbichler and Rubin 1999) may be
due to local adaptation of stocks or selective mortality caused
by the rearing environment. Most characteristics that differ
between hatchery and wild salmonids have been reported to
have a genetic basis, and many also vary among locally
adapted wild populations (Fleming and Gross 1989; Young-
son and Verspoor 1998). Because hatchery broodstocks often
are not derived from local populations, differences between
hatchery and wild fish may be simply due to differences in
local adaptations rather than effects of hatchery selection or
environment (Chilcote et al. 1986; Reisenbichler and Rubin
1999). However, producing hatchery fish unavoidably causes
genetic changes because broodstock fish are chosen artifi-
cially rather than by competing for mates in a natural envi-
ronment in which sexual selection would occur and because
some of the greater early-life mortality of wild fish causes
selection (Busack and Currens 1995).

Because differences between hatchery and wild fish can
be caused by these different mechanisms, comparisons of
the two strains test different hypotheses depending on three
factors: genetic background, rearing environment, and the
environment in which the study was conducted (i.e., testing
environment). First, studies that compare hatchery and wild
fish of different genetic background but reared in the same
environment test for genetically based differences (i.e., a
common garden experiment). In this case, the term “hatch-
ery fish” is used to mean the progeny of fish that have been
reared in a hatchery for one or more generations, whereas
“wild fish” are those that have not been genetically influ-
enced by hatchery releases. Second, studies that compare
fish of the same genetic background reared in different envi-
ronments (e.g., hatchery raceway versus natural stream chan-
nel) test for an effect caused by the rearing environment.
Here, “hatchery fish” are those reared in the hatchery, and
“wild fish” are those reared in the stream. Third, studies that
compare fish of different genetic background in different
rearing environments test for the combined effects of genetic
background and environment. Finally, the testing environ-
ment is a nuisance factor in comparing hatchery versus wild
fish. Generally, the research question of interest is how the
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performance of hatchery and wild fish compare in a natural
stream. However, studies often have been conducted in
hatcheries, laboratories, or artificial streams to allow for
greater experimental control. This testing environment may
be important because it probably affects many types of com-
parisons directly and may also interact with genetic back-
ground and rearing environment (Ruzzante 1994; Einum and
Fleming 2001). For example, differences between hatchery
and wild fish might be expressed to different extents in labo-
ratories versus streams, and the extent to which they are ex-
pressed might also depend on genetic background or rearing
environment.

For this perspective, we selected the most important stud-
ies that tested for differences between hatchery and wild fish
in characteristics that potentially affect competitive ability or
survival. These include studies using designs that tested for
differences resulting from genetic background, rearing envi-
ronment, or the combined effects of both. Our primary goal
is to describe physiological, morphological, and behavioral
characteristics that differ between hatchery and wild fish, but
we also summarize the genetic and environmental controls
used for each study in Table 1. For resident salmonids, our
summary includes both juvenile and adult life stages, but for
anadromous salmonids, it reflects a bias in the literature to-
ward reporting differences for juveniles. Nevertheless, we
report differences for adult anadromous salmonids and other
material where appropriate. Unless otherwise stated, we have
accepted the authors’ conclusions about these differences with-
out evaluating the experimental design or statistical power of
each study.

Aggression

Differences in the frequency and intensity of aggressive
behavior, such as nips, chases, and lateral or frontal displays,
have been commonly reported between hatchery and wild
salmonids using several types of experiments. Aggression is
directly related to competition because less aggressive fish
are often displaced downstream or into energetically less fa-
vorable areas of the stream (Mason and Chapman 1965;
Fausch 1984). Some studies have compared populations by
quantifying the behavior of each group in allopatry (e.g.,
Moyle 1969; Fenderson and Carpenter 1971; Deverill et al.
1999) or comparing the mean behavior of individual fish
matched against themselves in mirrors (Swain and Riddell
1990; Berejikian et al. 1996). Other studies have quantified
aggressive behavior of hatchery and wild fish in sympatry
(e.g., Fenderson et al. 1968; Bachman 1984) or by using a
combination of experiments (e.g., Dickson and MacCrimmon
1982; Berejikian et al. 1996).

Several hypotheses have been proposed to explain why
hatchery fish might be more or less aggressive than wild
fish. The high densities of fish in hatcheries can suppress the
establishment of social dominance structures that commonly
occur in streams (Keenleyside and Yamamoto 1962; Jenkins
1971), thereby promoting high aggression after hatchery fish
are released. For example, Steward and Bjornn (1990) sug-
gested that hatchery fish appear more aggressive after re-
lease into streams because they have not had an opportunity
to establish social hierarchies. By comparison, wild fish
have already established dominance hierarchies, so aggres-
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sive acts to maintain them are needed less frequently. Mesa
(1991) also hypothesized that cutthroat trout (Oncorhynchus
clarki) reared at high density in hatcheries were unable to
develop stable social structures and had not learned the
trade-off between the benefits of aggressive behavior and its
energetic cost. Physiological characteristics of hatchery fish
might also influence aggression. Fleming et al. (2002) dem-
onstrated that selection for faster-growing fish by hatcheries
(see below) coincides with higher levels of growth hormone,
which can increase aggressive behavior in salmonids (Johnsson
and Bjornsson 1994; Fleming and Einum 1997).

Conversely, Doyle and Talbot (1986) predicted that hatch-
eries would select for less aggressive fish based on a game-
theoretic analysis. Ruzzante’s (1994) review of the effects of
domestication on aggressiveness concluded that hatcheries
could select for either greater or lower aggressiveness de-
pending on the availability and distribution of food in the
hatchery. Where food is limited and spatially patchy, aggres-
sion may be selected for, and growth depensation can occur
as dominant fish monopolize food sources (see Blaxter 1975).
However, if food is in excess, aggression may be selected
against because more aggressive fish expend energy unnec-
essarily trying to defend food supplies that are not limiting
and, therefore, grow more slowly than disinterested fish. The
lack of predators in hatcheries might also select for more ag-
gressive fish (see below).

Most aggression studies reported that hatchery-reared sal-
monids and their offspring were more aggressive than their
wild counterparts. However, these results are not universal
(Table 1). Relative aggression in Atlantic salmon may
change with fish density (Fenderson and Carpenter 1971),
and interactions between density, rearing environment, and
testing environment likely occur for other species as well
(Ruzzante 1994). Habitat partitioning between hatchery and
wild fish of different sizes may also reduce aggression be-
tween the two types (Chandler and Bjornn 1988). Relative
levels of aggression changed with life stage and size in steel-
head (Oncorhynchus mykiss; Berejikian et al. 1996). Coho
salmon (Oncorhynchus kisutch) reared in hatcheries have
also been reported to be more aggressive than wild fish as
juveniles (Swain and Riddell 1990; Berejikian et al. 1999)
but less aggressive than wild fish as returning spawners
(Fleming and Gross 1993) or adult broodstock (Berejikian et
al. 1997). Fleming et al. (1997) reported that hatchery-reared
adult Atlantic salmon returning to spawn in fresh water ex-
hibited similar levels of aggression to their wild counterparts
but became involved in more prolonged contests, which re-
sulted in more injuries to hatchery fish. Other studies have
reported that hatchery fish use physical forms of aggression
such as nips more frequently than do wild fish (e.g., Fenderson
et al. 1968; Petrosky and Bjornn 1988; Mesa 1991). Al-
though most studies indicate that hatchery-reared salmonids
are more aggressive than their wild counterparts as juveniles,
interactions between genetic background, environment, den-
sity, life stage, size, and other unknown factors prevent a
more detailed conclusion about their relative aggression.

Energy expenditure and feeding
Hatchery-reared salmonids released into streams may be
less energetically efficient than wild fish (Table 1), which can
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result in lower survival rates for hatchery fish (Mortensen
1977; Bachman 1984). The high-density, scramble-for-food
environment of the hatchery probably teaches or selects for
behaviors that are inefficient in streams. Several species of
hatchery-reared salmonids have been reported to be gener-
ally more active (Moyle 1969; McLaren 1979) or to use
higher velocity areas of the stream than their wild con-
specifics (e.g., Pollard and Bjornn 1973; Petrosky and
Bjornn 1988; Mesa 1991). However, in some cases, spatial
segregation could have resulted from size differences be-
tween wild and hatchery fish (Pollard and Bjornn 1973). In-
efficient behavior has also been linked to aggression. For
example, excessive aggression reduced time available for
feeding by dominant hatchery-reared Atlantic salmon in two
laboratory experiments (Fenderson et al. 1968; Fenderson
and Carpenter 1971). In an experiment in an artificial stream
(Deverill et al. 1999), introduced hatchery brown trout
(Salmo trutta) continued to expend energy in agonistic en-
counters with resident wild fish despite failing to displace
the wild fish from energetically desirable focal points, and
their condition declined as a result. Others have reported
hatchery fish winning agonistic encounters with wild fish
but then failing to occupy the contested area (Bachman 1984;
McMichael et al. 1999).

Potential energy deficits incurred by hatchery fish after re-
lease into streams may be compounded by other characteristics
such as lower efficiency at feeding on wild prey (reviewed by
Olla et al. 1998), reduced stamina or swimming ability (Vin-
cent 1960; Greene 1964; Bams 1967), and higher metabolic
rates compared with wild fish (Ersbak and Haase 1983). A
small fraction of released hatchery-reared fish may not learn
to consume wild prey (Elliott 1975; Maynard et al. 1996;
Olla et al. 1998). Other investigators have reported that
hatchery fish consume less food (e.g., Sosiak et al. 1979;
Ersbak and Haase 1983; Smirnov et al. 1994) or fewer types
of prey (Sosiak et al. 1979) than wild fish. Ersbak and Haase
(1983) reported that hatchery-reared brook trout (Salvelinus
fontinalis) consumed similar prey items as wild fish but were
slower in switching to new types of prey as seasonal changes
altered the relative abundance of invertebrate taxa. Feeding
opportunity can also be affected by behavior. Hatchery-reared
salmonids have been reported to consume fewer benthic prey
than wild salmonids (Sosiak et al. 1979; Maynard et al. 1996)
and more terrestrial insects (Johnson et al. 1996) because they
tend to occupy positions nearer to the water surface.

Predator avoidance and domestication

Hatchery-reared fish often do not avoid predators as well
as wild fish do and, consequently, suffer higher mortality
rates (reviewed by Olla et al. 1994, 1998). Mortality can be
especially high when predators congregate near large re-
leases of hatchery fish (Beamish et al. 1992; Collis et al.
1995). Acclimation to human disturbance might also selec-
tively increase mortality of hatchery-reared fish because they
may exhibit a reduced fright response to humans (i.e., do-
mestication; Vincent 1960; Mead and Woodall 1968; Moyle
1969) and be more vulnerable to angling than wild fish
(Marnell 1985). Although ability to avoid predators can be
improved with experience (Olla and Davis 1989; Healey and
Reinhardt 1995; Olla et al. 1998), hatchery fish may never
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learn to avoid predators as well as wild fish do (Berejikian
1995), and predator avoidance might be genetically con-
trolled (Johnsson and Abrahams 1991). Lack of experience
is generally assumed to be the cause of reduced predator
avoidance in hatchery fish (Steward and Bjornn 1990).
However, several studies have found differences between
offspring of wild and hatchery fish that were reared in a
common environment (Table 1). These data suggest that her-
itable genetic traits related to predator avoidance also exist.

Predator avoidance also might be linked with aggressive
behavior of salmonids (Martel and Dill 1993; Fleming and
Einum 1997; Olla et al. 1998). In natural settings, there is a
trade-off between the energetic gain of foraging and the risk
of predation incurred (Grant 1993). However, the lack of
predators in hatchery environments may select for fish that
aggressively forage for food at the expense of wariness of
predators (Johnsson et al. 1996). Furthermore, hatchery fish
have high energetic demands because they exhibit higher
levels of growth hormone than do wild fish (Fleming and
Einum 1997; Fleming et al. 2002) and generally grow more
quickly. After release, high levels of growth hormone and
concomitant high energetic demands might prompt hatchery
fish to forage more under the risk of predation (Johnsson
and Bjornsson 1994; Johnsson et al. 1996; Fleming and
Einum 1997). Although hatchery-reared fish are generally
larger than their wild counterparts, potentially reducing their
vulnerability to some gape-limited predators, Johnsson and
Abrahams (1991) demonstrated that hatchery-reared steelhead
foraged under high risk of predation more than did wild fish,
despite being equally susceptible to predation by cutthroat
trout that were large enough to consume both types of prey.

Hatchery fish have several other traits that potentially
affect their susceptibility to predators. The use of positions
nearer to the water surface (Vincent 1960; Moyle 1969;
Bachman 1984) and with less concealment (Vincent 1960;
Ritter and MacCrimmon 1973; Bachman 1984) relative to
wild fish probably increases visibility to avian and aquatic
predators. Skin coloration patterns related to hatchery rear-
ing (see below) can also increase visibility to predators
(Donnelly and Whoriskey 1991).

Dispersal

Fish reared in high-density hatchery conditions may fail to
disperse into available habitat when stocked in large num-
bers (e.g., Symons 1969; also see reviews by Clady (1973)
and Cresswell (1981)). Survival and growth of hatchery fish
of several species were reported to be inversely related to
stocking density (e.g., Mortensen 1977; Egglishaw and
Shackley 1980; Hume and Parkinson 1987), presumably
because intraspecific competition increases with density in
local patches. However, most studies have not compared dis-
persal of hatchery fish with that of wild fish. Symons (1969)
reported that stocked hatchery Atlantic salmon moved less
than wild Atlantic salmon in the same stream. Richards and
Cernera (1989) reported that hatchery-reared chinook salmon
(Ocorhynchus tshawytscha) remained near stocking areas
but wild salmon also remained concentrated around their na-
tal redds. In general, it seems logical that hatchery fish would
disperse less than wild fish given their rearing environment
and lack of experience with social structures in streams.
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However, it has yet to be demonstrated that dispersal behav-
ior is different between wild and hatchery fish when the two
groups are not influencing each other.

Size and growth

Hatchery fish are usually larger and faster growing than
their wild counterparts of the same cohort, in part because
hatcheries often select broodstock that mature and spawn
early (Vincent 1960; Reisenbichler and McIntyre 1977; Flem-
ing et al. 2002) and in part because the hatchery diet and en-
vironment results in faster-growing fish (Piggins and Mills
1985; Rhodes and Quinn 1998; Berejikian et al. 1999). It is
difficult to determine the causes of accelerated growth in the
hatchery because genetic effects are confounded with the
hatchery diet, water temperature, and other environmental
factors (Blaxter 1975; Einum and Fleming 1999). However,
hatchery-reared fish or their progeny sometimes grow faster
after release into natural streams than wild fish of the same
or smaller initial sizes (e.g., Petersson et al. 1996; McGin-
nity et al. 1997; Kallio-Nyberg and Koljonen 1997). These
data suggest that accelerated growth of hatchery fish is not
only due to rearing conditions in the hatchery, but also to ge-
netic differences or persistent phenotypic effects.

The larger size and faster growth of hatchery fish proba-
bly also reflects differences in selective pressure between
hatchery and natural environments. Hatchery rearing may
cause selection for early emergence and fast growth because
fish that emerge early and grow quickly generally have a
competitive advantage over smaller fish (Mason and Chap-
man 1965; Metcalfe and Thorpe 1992). Furthermore, size at
first winter or smolting has been directly linked with sur-
vival rate for a number of salmonid species (see Quinn and
Peterson (1996) for a review). There are few disadvantages to
early emergence in the hatchery; so early emergence is proba-
bly reinforced by natural selection. However, other factors
may select against early emergence in natural streams. Early
emergence relative to conspecifics can result in higher suscep-
tibility to predation (Braunnas 1995), catastrophic floods (e.g.,
Seegrist and Gard 1972; Fausch et al. 2001), or a mismatch
with ocean productivity (Hartman et al. 1982; Holtby 1988).

As a consequence of their larger size, juvenile hatchery
fish may be able to outcompete smaller wild fish (Nickelson
et al. 1986; Rhodes and Quinn 1998; Berejikian et al. 1999).
However, in some cases, wild anadromous salmonids may
increase their growth rates by emigrating to sea before hatch-
ery fish are released, thereby reaching similar sizes by the
time hatchery fish reach the ocean and potentially compete
with them (Unwin and Lucas 1993).

Color

Hatchery-reared salmonids are generally lighter in color than
salmonids reared in natural environments because hatchery-
reared fish adjust to the background color of the raceways in
their rearing environment (Donnelly and Whoriskey 1991;
Maynard et al. 1995). Hatchery fish can change their general
coloration within minutes using chromatophores. However,
developing the pigments and chromatophore patterns to match
the background of a new stream environment can take weeks
(Maynard et al. 1995). Berejikian et al. (1999) suggested
that the diet of captive broodstock could also reduce pig-
mentation in eggs and subsequently alter fry coloration.

Can. J. Fish. Aquat. Sci. Vol. 60, 2003

In addition to affecting susceptibility to predators, differ-
ences in coloration between wild and hatchery-reared fish
may influence the outcome of competitive interactions. Domi-
nant salmonids generally remain lighter colored, whereas sub-
ordinate fish assume darker body coloration to signal
submission (e.g., Rosenau and McPhail 1987; Berejikian et al.
1999), although contrast between coloration of the body and
parr marks or fins might be a more important signal of dom-
inance or submission (cf. Keenleyside and Yamamoto 1962;
Fenderson et al. 1968; Taylor and Larkin 1986). Differences
in coloration that allow fish to signal their status may reduce
the need for aggressive interactions (Berejikian et al. 1999),
but hatchery-reared salmonids may be less able to assume
submissive coloration patterns than wild fish. The inability
to signal submission could prolong aggressive encounters
between wild and hatchery fish or allow hatchery-reared fish
to assume dominant positions in streams as competing wild
fish become exhausted (Berejikian et al. 1999). The effect of
color on hatchery versus wild fish interactions is generally
confounded with other characteristics that differ between the
two groups such as size, rearing environment, and innate ag-
gression. Furthermore, salmonid markings may be local ad-
aptations (Taylor and Larkin 1986), possibly confounding
comparisons between wild fish and hatchery-reared fish from
different genetic backgrounds. These difficulties have, thus
far, prevented any conclusive determination of the effects of
color on competition between hatchery-reared and wild fish.

Other morphological characteristics and physiological
performance

Several other morphological and physiological performance
characteristics differ between wild and hatchery-reared sal-
monids and potentially affect competitive ability. After sev-
eral generations of domestication, the body composition of
hatchery fish is generally made up of more fat and less pro-
tein than that of wild fish (Phillips 1957; Vincent 1960;
Blaxter 1975). Hatchery selection and environment may alter
internal and external morphology (e.g., Hjort and Schreck
1982; Taylor 1986; Gross 1998), which can influence swim-
ming, spawning success, and survival (Taylor 1986; Gross
1998). Hatchery-reared fish have been reported to be poorer
sustained swimmers than wild fish (Vincent 1960; Greene
1964; Bams 1967) and to exhibit a reduced fight-or-flight re-
sponse to stress (Woodward and Strange 1987; Salonius and
Iwama 1993; Johnsson et al. 2001). Anadromous salmonids
reared in hatcheries may be physiologically less prepared to
smolt than wild fish (Brauner et al. 1994; Shrimpton et al.
1994). Several studies have demonstrated that morphological
characteristics of hatchery-reared fish are more homogeneous
across a large geographical range than are wild fish in the
same range (Hjort and Schreck 1982; Taylor 1986; Fleming
and Gross 1989). These data suggest that rearing practices
promote characteristics that are better adapted to hatcheries,
which are similar throughout much of the world, than to lo-
cal conditions that affect survival in the wild.

Prior residence

Competitive interactions between wild and hatchery fish
can be influenced by the fact that wild fish typically reside
in streams before hatchery fish are stocked. Because prior
residence is not a physiological, morphological, or behav-
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ioral characteristic of fish, we describe the evidence for an
effect of prior residence on competition but do not summa-
rize studies of prior residence in Table 1. The advantage of
prior residence in territory defense has been documented for
both intraspecific (e.g., Chapman 1962; Rhodes and Quinn
1998; Gowan and Fausch 2002) and interspecific interac-
tions among salmonids (e.g., Glova and Field-Dodgson 1995).
Acclimation for as little as one day can confer an advantage
to the residents in social interactions over newly introduced
fish (Huntingford and Garcia De Leaniz 1997). Fish are as-
sumed to learn the benefits conferred by residing in an area
and the relative cost of defending it (Grant 1993; Johnsson
et al. 1999).

The advantage of prior residence can be overcome by
body size (Rhodes and Quinn 1998; Gowan and Fausch
2002), but the two are related in natural systems. Fish that
emerge earlier are the first to establish territories and nor-
mally gain a size advantage, sometimes prompting fish that
emerge later to emigrate (Mason and Chapman 1965; Chan-
dler and Bjornn 1988; Metcalfe and Thorpe 1992). Deverill
et al. (1999) reported that adult and subadult prior-resident
brown trout held a growth advantage over other introduced
wild brown trout and an even greater advantage over intro-
duced hatchery brown trout. However, they believed that the
larger advantage over hatchery fish was due to unnecessary
expenditure of energy by hatchery fish. As with most com-
parisons above, fish density, environment, and distribution of
food may interact to alter the relative advantage of prior res-
idence (Huntingford and Garcia De Leaniz 1997).

Most studies that have identified a strong prior-residence
effect have used size-matched fish (e.g., Cutts et al. 1999;
Deverill et al. 1999). The advantage that prior residence af-
fords wild fish may be negated by larger or faster-growing
hatchery fish (Glova and Field-Dodgson 1995; Rhodes and
Quinn 1998). On the other hand, prior residence may confer
benefits independent of physical dominance over territories.
O’Connor et al. (2000) demonstrated that juvenile Atlantic
salmon with prior residence could gain a feeding advantage
by darting nearer to the water surface to get food items with-
out excluding or dominating immigrants. In this case, wild
fish with prior residence used their knowledge of the terri-
tory to achieve greater net energy gain, despite sometimes
becoming subordinate to larger hatchery fish.

Evidence for competition

Competition occurs when multiple organisms exploit a
common resource and the fitness of at least one is reduced,
because either the resource is in short supply or other organ-
isms interfere with its use (Birch 1957). Competition may be
demonstrated by showing a reduction in one or more mea-
sures of fitness, such as growth, fecundity, or survival, when
organisms are in sympatry compared with allopatry. To pro-
vide strong evidence of competition, it is necessary to con-
duct replicated, controlled, manipulative experiments
(Underwood 1986; Fausch 1988, 1998). Furthermore, it is
desirable for experiments to mimic the natural environment
as closely as possible so that the relevant hypothesis is
tested; that is, do the experimental organisms compete in the
wild (Underwood 1986; Fausch 1988)?

1027

Because conducting controlled experiments in natural set-
tings is difficult, much of the evidence for competition be-
tween wild and hatchery-reared salmonids is based on less
direct or rigorous studies. For example, many researchers
concluded that competition is occurring between hatchery
and wild fish because one group had lower survival than the
other when they were in sympatry. Attributing differences in
survival rates to competition is tenuous for uncontrolled
studies, particularly given the innate differences between the
two groups described above that probably cause survival
rates to differ (cf. Wales 1954). However, many studies de-
signed to answer other research questions have provided cir-
cumstantial evidence for competition. Therefore, we first
summarize the weak evidence for competition before de-
scribing studies that tested for displacement of wild fish by
hatchery fish or directly tested for competition.

Weak evidence for competition

Many researchers have hypothesized that survival of
hatchery fish was reduced by competition with wild fish
based on early research designed to evaluate only hatchery
fish survival or availability to anglers (e.g., Schuck 1948;
Flick and Webster 1964). These studies measured hatchery
fish survival and sometimes growth, but only in sympatry
with wild fish (i.e., no controls), and often no comparable
estimates were made for wild fish. These studies were ap-
propriate to determine the contribution of stocked fish to the
fishery, but not to determine the relative importance of com-
petition, behavior, or other mechanisms affecting survival of
hatchery or wild fish. Hatchery fish survival relative to wild
fish was reported to be lower (Schuck 1948; Vincent 1960;
Flick and Webster 1964), similar (Adelman and Bingham
1955), or dependent on season (Mason et al. 1967). In gen-
eral, too many confounding variables were present in these
studies to draw clear conclusions about competitive interac-
tions between wild and hatchery fish.

More recent studies that have held wild and hatchery fish
in sympatry to examine other interactions between the two
provide limited evidence for competition, but results have
also been inconsistent. Survival of hatchery-reared fish has
been reported to be higher (Berejikian et al. 1999; Reinhardt
et al. 2001), lower (Leider et al. 1990; Berg and Jorgensen
1991; Einum and Fleming 2001), or equal (Rhodes and
Quinn 1999) to that of wild fish. Competition likely played a
role in at least some of the results. Berejikian et al. (1999)
suggested that competition with fry from hatchery stock in-
fluenced survival of wild coho salmon in an experimental
flume because more wild fish died of apparent starvation at
the downstream end of the flume than at the upstream end,
where food was not limiting. McGinnity et al. (1997) and
Fleming et al. (2000) reported that Atlantic salmon with
hatchery genetic backgrounds exhibited higher early-life
mortality than did Atlantic salmon with wild genetic back-
grounds when both types were reared similarly before re-
lease, but surviving hatchery fish outgrew and probably
displaced their wild counterparts.

Correlational studies that documented population in-
creases or establishment of hatchery fish when wild fish de-
clined, or vice versa, also provide limited support for the
hypothesis that competition is occurring. Seelbach (1987)
and Seelbach and Whelan (1988) speculated that higher sur-
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vival and adult returns of hatchery steelhead in Great Lakes
streams with low densities of naturally reproducing
steelhead was due to reduced competition. Campton and
Johnston (1985) suggested that successful establishment of
hatchery-reared rainbow trout in the upper Yakima River,
Washington, was due to reduced competition, because popu-
lations of native steelhead had declined. Likewise, Volpe et
al. (2001) hypothesized that Atlantic salmon escaping from
farms may be colonizing the North Pacific Ocean, despite
many failed introduction attempts during the early 20th cen-
tury, because native salmonid populations have declined.

Similar studies have reported decreases in wild popula-
tions concurrent with stocking, or increases in wild popula-
tions when stocking ceased. Bjornn (1978) reported that wild
populations of rainbow trout declined when steelhead fry
were stocked in the Lemhi River, Idaho. Vincent (1987) re-
ported that densities of wild rainbow trout and brown trout
increased after stocking of adult hatchery rainbow trout
ceased in two Montana streams. However, concurrent changes
in river discharge were confounding. Furthermore, hatchery
fish were smaller than the resident wild fish in this case,
making it less likely that the wild fish were outcompeted (cf.
Petrosky and Bjornn 1988). Thuemler (1975) has frequently
been cited as evidence of competition among wild and
hatchery-reared trout in streams. He stated that wild trout
populations increased in several Wisconsin streams after
stocking ceased, apparently based on correlational studies,
but the article does not report any specific data.

Other studies reported that hatchery-reared anadromous
fish have replaced wild fish in the ocean (e.g., Pearcy 1997,
Unwin and Glova 1997; Hilborn and Eggers 2000). Compe-
tition from hatchery fish may play a role in reducing ocean
survival of wild fish, but mixed-stock exploitation problems
(MclIntyre and Reisenbichler 1986; Hilborn and Eggers
2000; Noakes et al. 2000) and genetic dilution (Flagg et al.
1995; Unwin and Glova 1997) probably also are important
factors. Although studies of ocean interactions are limited be-
cause estimates of wild fish survival are unavailable (Winton
and Hilborn 1994), the hypothesis of competition is sup-
ported by recent studies that indicate a stronger negative ef-
fect of hatchery fish when ocean conditions are less favorable
for salmonids so that carrying capacity is presumably re-
duced (Pearcy 1997; Beamish et al. 1997; Levin et al. 2001).

Overall, the weak evidence for competition demonstrates
that survival rates often differ between hatchery and wild
fish in sympatry and suggests that competition differentially
influences survival rates in some cases. However, competi-
tion cannot be demonstrated strictly by these studies because
the effects of competition are confounded with physiologi-
cal, morphological, and behavioral differences between
hatchery and wild fish that also affect survival.

Displacement

A more direct type of evidence for competition is the dis-
placement of wild fish from territories or focal positions by
hatchery fish. Although competition has not strictly been
demonstrated unless survival, growth, or reproduction of dis-
placed fish has been reduced, these studies provide informa-
tion about the relative ability of hatchery versus wild fish to
compete for space. Stream salmonids compete for positions
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that are energetically favorable in terms of food availability
and refuge from current (Metcalfe 1986; Hughes 1992), and
fish that occupy more favorable positions grow faster (Fausch
1984). Studies that measure solely displacement rely on the
logical inference that when stream positions are limited, dis-
placed fish are forced into less favorable areas and conse-
quently suffer reduced fitness.

Displacement of wild fish by hatchery fish has been re-
ported in both small-scale laboratory experiments and natu-
ral streams. Fenderson et al. (1968) found that hatchery-
reared juvenile Atlantic salmon attained dominant positions
in aquaria over wild fish. However, a subsequent experiment
revealed that wild fish dominated when overall densities were
lowered to levels similar to those in streams (Fenderson and
Carpenter 1971). Einum and Fleming (1997) reported that
farmed Atlantic salmon dominated wild fish in one-on-one
challenges, with hybrids exhibiting intermediate success.
Similarly, in one-on-one challenges in aquaria, juvenile
hatchery-reared coho salmon overcame both size-matched
stream-reared fish from the same parental stock and smaller
wild fish (Rhodes and Quinn 1998). Berejikian et al. (1999)
reported that juvenile coho salmon with mothers from hatch-
ery broodstock won dominance challenges in a laboratory
flume more frequently than paternal half-siblings with wild
mothers, thereby demonstrating a maternal effect. On the
other hand, Peery and Bjornn (1996) reported no consistent
effect of adding hatchery juvenile chinook salmon on wild
chinook salmon emigration from laboratory flumes.

Displacement of wild fish by hatchery fish has also been
directly observed in streams among steelhead or rainbow
trout (Pollard and Bjornn 1973; McMichael et al. 1999, 2000),
coho salmon (Nielsen 1994), and chinook salmon, but only
when the hatchery chinook salmon were larger (Peery and
Bjornn 1996). In contrast, Bachman (1984) reported that
nearly equal proportions of hatchery and wild adult brown
trout dominated agonistic encounters, but wild trout that
were dominant before hatchery fish were added rarely were
displaced. Hatchery fish are typically larger than wild fish,
which may decrease encounters that result in displacement
(Pollard and Bjornn 1973; Petrosky and Bjornn 1988; Niel-
sen 1994). For example, Petrosky and Bjornn (1988) re-
ported that stocked rainbow trout rarely displaced wild rainbow
trout because the hatchery fish were larger and occupied
deeper water.

Displacement of wild fish may also occur at the reach
scale after hatchery fish are stocked. Symons (1969) and
McGinnity et al. (1997) reported that wild fish emigration
rates from stream sections enclosed by weirs increased af-
ter hatchery fish were stocked. Fleming et al. (2000) re-
ported that wild Atlantic salmon fry were displaced
upstream as progeny of farm-reared Atlantic salmon devel-
oped into fry. Alternatively, increased emigration rates may
be due to wild fish schooling with newly released hatchery
fish that are also emigrating, termed the “pied-piper effect”
(Hansen and Jonsson 1985; Hillman and Mullan 1989).
Overall, studies of displacement generally indicate that
hatchery fish have equal or greater ability to seize profit-
able feeding positions, at least as juveniles, which should
increase their fitness over wild fish that are relegated to
less favorable positions.
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Displacement can also be a direct measure of competition
when adults compete for spawning areas or mates. Hatchery-
reared anadromous salmonids that return to natural streams
to spawn have been reported to be less competitive for mates
than wild fish (e.g., Fleming and Gross 1993; Berejikian et al.
1997; Fleming et al. 1997) and, consequently, to contribute
less to subsequent population production (reviewed by Fleming
and Petersson (2001)). However, testing this type of compe-
tition may require specialized experimental designs because
hatchery fish are both competitors and mates with wild fish.
Therefore, we do not address competition for mates further
here.

Strong evidence for competition

Controlled experiments are required to provide strong evi-
dence for competition between hatchery and wild fish. Ap-
propriate designs for such experiments are analogous to the
two designs for testing interspecific competition (Underwood
1986; Fausch 1988, 1998; Table 2), but the questions are dif-
ferent when testing for intraspecific competition between
hatchery and wild fish. From the standpoint of wild fish con-
servation, there are two relevant questions about competition
with hatchery fish. First, to what extent do hatchery fish
compete with wild fish when viewed as a perturbation or in-
vader? Additive experiments are designed to answer this
question. Second, is the effect of adding hatchery fish differ-
ent from the effect of adding wild fish to reach the same to-
tal density? For example, if wild fish populations recovered
and increased to the point where stocking were no longer
necessary, would density-dependent effects among wild fish
be equal to the effects of adding hatchery fish, indicating
that hatchery and wild fish are competitively equivalent?
Substitutive experiments are designed to answer this question.

Additive experiments, designed to quantify the effects of
stocking hatchery fish on wild fish, are those in which the
number of wild fish is held constant between treatment and
control groups but hatchery fish are added to the treatment
group (i.e., comparisons of wild fish in treatments 2 and 3 in
Table 2). This design incorporates the features of classic ex-
perimentation because it holds all things equal between
treatments except the perturbation of stocking hatchery fish.
However, the interpretation of intraspecific experiments in
which hatchery fish are added is slightly different than com-
petition experiments in which another species is added. Inter-
specific competition experiments are used to test the existence
of competition, that is, whether there is any niche overlap
between the two species. In contrast, the magnitude of ef-
fects is of more interest than their existence in intraspecific
competition experiments in which hatchery fish are added.
This is because resource use almost certainly overlaps be-
tween hatchery and wild fish of the same species despite the
differences in behavior and morphology described above, so
competition is expected at some density. As a result, effects
of hatchery fish will likely be a function of the density of
each group, the carrying capacity of the testing environment,
and the relative competitive ability of hatchery versus wild
fish.

An important feature of additive experiments is that any
effect of increased competitive ability of hatchery fish over
wild fish cannot be separated from effects of the increased
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Table 2. Experimental designs to test the existence and strength
of intraspecific competition between wild and hatchery-reared
fish (adapted from Fausch 1998).

Treatment
1 2 3 4 5
Wild fish 2W \% w
Hatchery fish H H 2H

Additive designs  effect of competition

M

Substitutive designs ¢ strength of competition

Note: W, number of wild fish; H, number of hatchery fish. Treatments
1-3 measure effects of competition on wild fish. The comparison of wild
fish in treatment 2 versus treatment 3, an additive design, measures the
effect of adding hatchery fish on wild fish. The comparison of treatment 1
versus treatment 3, a substitutive design, measures the relative competitive
ability of hatchery versus wild fish, controlling for density. Treatments 3—
5 may be used similarly to test the effects of wild fish on hatchery fish
relative to areas with no wild fish. See text for more detail.

density they cause (cf. Fausch 1998). As a result, this design
is useful only to estimate effects of hatchery fish at specific
combinations of wild and hatchery fish density and stream
carrying capacity and cannot be generalized to other combi-
nations or streams. For example, if hatchery fish were stocked
at a given density into a stream with wild fish, the degree to
which hatchery fish affect wild fish survival and growth
would change if stocking density or wild fish density
changed, and the effects would be different in a stream with
a different carrying capacity, even if all else were equal.
Therefore, additive designs are most appropriate to measure
the effects of specific stocking programs in which hatchery
fish are introduced at the same density in streams with simi-
lar wild fish densities and carrying capacities.

In contrast, substitutive designs measure the relative com-
petitive ability of wild versus hatchery fish. In this design,
the density of wild fish in the control group equals the total
density of fish (hatchery plus wild) in the treatment group
(i.e., comparison of treatments 1 and 3 in Table 2).
Substitutive experiments determine whether the effect on
wild fish of adding hatchery fish is any different than in-
creasing the density of wild fish by the same amount. For
example, if the growth of wild fish is reduced when hatchery
fish are added more than when an equal density of wild fish
are added, one can infer that hatchery fish are more competi-
tive than wild fish. Although the degree to which hatchery
fish affect wild fish will depend on the densities of fish used
and the carrying capacity of the testing environment, in
substitutive experiments, this effect size is of less interest
than whether adding hatchery fish has any greater effect than
adding wild fish and whether this effect is biologically sig-
nificant. That is, the question of whether stocking hatchery
fish has a greater ecological cost to wild populations than if
wild fish were added is probably of greater interest than the
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question of how near to carrying capacity was the testing en-
vironment in which the experiment was conducted. There-
fore, substitutive designs are most appropriate to determine
whether competitive differences between particular races of
hatchery fish and wild fish exist.

From the perspective of hatchery fish success, similar ad-
ditive and substitutive designs can be used to evaluate the
magnitude of competition with wild fish and the relative
competitive ability of hatchery fish. For example, additive
designs that compare controls with hatchery fish alone to
treatments with hatchery plus wild fish (treatments 3 and 4;
Table 2) measure the relative benefit to hatchery programs of
stocking unoccupied streams versus streams with wild popu-
lations. However, substitutive designs that compare treat-
ments with wild plus hatchery fish with those with an equal
total density of hatchery fish (treatments 3 and 5; Table 2)
are of less interest. This experiment tests whether the effect
on hatchery fish of adding wild fish is any different than in-
creasing the density of hatchery fish by the same amount.
However, we are not aware of any management program in
which wild fish are intentionally removed and replaced with
hatchery fish. We note that substitutive experiments have a
one-way interpretation because the effect of competition is
controlled only for the group that is replaced. For example,
hatchery fish could have the same effect on wild fish as an
equal increase in wild fish density (treatments 1 and 3; Ta-
ble 2), but the hatchery fish could still lose fitness through
inefficient behaviors (McGinnity et al. 1997; Einum and
Fleming 2001; Bohlin et al. 2002). Finally, the number of
hatchery and wild fish used need not be equal in any of the
experimental designs above, provided that the interpretation
is one-way (cf. Underwood 1986). Instead, the numbers used
should reflect densities of wild fish in natural habitats and
the densities of hatchery fish that are stocked.

In the previous discussion, we assumed that the numbers
of fish were changed to manipulate density, but the size of
experimental units and carrying capacity were held constant.
It is also possible to manipulate density by keeping numbers
of fish constant across experimental units but changing the
area of the units. Such designs could also be used to test
whether competitive ability changes with density (e.g., Flem-
ing and Gross 1993, 1994). For example, juvenile hatchery
fish might be more competitive than wild fish at high densi-
ties that are similar to the hatchery environment but less
competitive at lower densities (Fenderson and Carpenter
1971). However, given the high variation that has generally
been reported in studies of competition even at single-density
combinations (e.g., Peery and Bjornn 1996; McMichael et
al. 1997), it is often logistically impossible to conduct exper-
iments at multiple densities with great enough replication to
simultaneously test the effects of density, competition, and
their interactions.

Studies using an additive design

Most studies reported in the literature have used additive
designs to examine the effects of hatchery fish on wild fish.
For example, Petrosky and Bjornn (1988) studied the effects
of stocking adult hatchery rainbow trout at several densities
on wild rainbow trout and cutthroat trout growth, movement,
and survival. Wild fish mortality increased only at the high-
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est stocking density. However, total mortality of wild fish
subject to hatchery fish stocking did not differ significantly
from control groups later in the year, because of either com-
pensation in the survival rate of remaining wild fish or
small-sample error. No significant effects were measured for
wild fish at lower stocking densities of hatchery fish. A
study of Oregon streams (Nickelson et al. 1986) revealed
that density of wild coho salmon juveniles was lower in
15 streams stocked with hatchery coho salmon than in 15
similar unstocked streams. The final density was only
slightly higher in stocked streams, suggesting that hatchery
coho salmon had largely replaced wild fish. The original
stocking probably caused the streams to be well above carry-
ing capacity in this study (Flagg et al. 1995). Nielsen (1994)
reported reduced production of wild coho salmon after
hatchery coho salmon were stocked in the Noyo River, Cali-
fornia. Production was also lower than in similar unstocked
streams, although not significantly so. Weiss and Schmutz
(1999) reported that wild brown trout growth was reduced in
sections of a crystalline stream in Austria in which densities
were doubled or tripled by stocking hatchery brown trout,
but unaffected in a limestone stream that was probably more
productive. However, wild trout abundance did not change
significantly in either stream. McMichael et al. (1997, 2000)
reported that wild rainbow trout growth was lower in 1-m?
enclosures containing one wild trout and one hatchery-reared
steelhead than in enclosures containing one wild trout only. In
general, these studies indicated that survival or growth of
wild fish was reduced when densities were increased to high
levels by stocking hatchery fish. The studies confirm that
competition from hatchery fish can reduce fitness of wild
fish, but the magnitude of the effect depends on densities of
both groups and environmental conditions.

A few studies have used additive designs to study the ef-
fects of wild fish on the success of hatchery fish (i.e., treat-
ments 3 and 4; Table 2). Miller (1955, 1958, 1962) conducted
a series of experiments using adult cutthroat trout in stream
sections. Survival of hatchery fish was much lower in sec-
tions that contained wild fish than in sections with hatchery
fish only. The density of wild fish was not reported, but
Miller (1962) found few wild fish deaths, suggesting that
wild fish outcompeted the hatchery fish. Needham and Slater
(1944) reported that survival and growth of hatchery brown
trout and rainbow trout was inversely related to the biomass
of wild trout present in experimental stream sections, but
wild fish growth and mortality were not known in this study
either. These studies indicate that competition from wild fish
can reduce fitness of hatchery fish in certain circumstances
but the effect is density-dependent, as above.

Studies using a substitutive design

We are aware of only two experiments that used a
substitutive design suitable for testing the strength of compe-
tition from hatchery fish relative to wild fish. Peery and
Bjornn (1996) used treatments 1, 3, and 5 in Table 2 to ex-
amine competition among hatchery and wild chinook salmon
in laboratory channels. Although they found that hatchery
fish were more aggressive than wild fish and able to displace
wild fish from favorable stream positions when the hatchery
fish were larger, they did not find consistent effects on
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growth, mortality, or emigration. The study was well de-
signed, but it was limited by a scarcity of wild fish and had
low statistical power. Furthermore, replicates were conducted
during different periods throughout the year because wild
fish could not be caught in sufficient numbers to conduct all
replicates at the same time. Consequently, the wild fish were
larger than the hatchery fish during three seasons, a situation
that rarely occurs in streams that are stocked.

Bohlin et al. (2002) used a substitutive design to test the
effects of hatchery brown trout on wild brown trout in Swed-
ish streams. The effect on wild fish growth and survival of
adding hatchery fish did not significantly differ from the ef-
fect of adding wild fish. However, hatchery fish lost condi-
tion, presumably because they were inefficient at swimming
or foraging, even though they apparently exploited resources
to the same degree as wild fish.

Competition experiments can be used to test specific hy-
potheses about genetic or environmental effects on relative
competitive ability, just as comparisons of morphological or
behavioral characteristics can. All of the additive studies
cited above reared hatchery and wild fish in their home envi-
ronments and did not specifically control for genetic back-
ground, thereby testing for combined effects of hatchery
genetic selection and rearing environment. Both substitutive
studies used hatchery fish that were genetically similar to
the wild fish with which they competed. Peery and Bjornn
(1996) used hatchery fish from a supplementation program
that attempted to avoid artificial selection and retain genetic
frequencies similar to those of wild fish. Bohlin et al. (2002)
used hatchery-reared fish that were the progeny of locally
obtained wild fish. Further research that holds genetic back-
ground or rearing environment constant could be used to de-
termine the relative importance of genetics and environment
on competitive ability. Such designs would be particularly
useful in conjunction with substitutive experiments to allow
general conclusions to be drawn for other streams.

Conclusions

Despite the growing concern about the effects of stocking
hatchery fish on wild fish, relatively few experiments of
competition between hatchery and wild salmonids have been
published. The large body of literature demonstrating differ-
ences between hatchery and wild fish suggests that competi-
tive differences may exist between the two groups. However,
the ecological consequences of these differences, including
competition in natural streams, have not been quantified in
most cases.

Nearly all studies of competition between hatchery and
wild stream salmonids have used additive experimental de-
signs. These designs are appropriate to answer management
questions regarding the impact of stocking hatchery fish at
specific densities and stream carrying capacities, if the test-
ing environment is similar to natural conditions and the den-
sities closely match the stocking program of interest. If the
experiment is not conducted using the hatchery fish and
rearing environment of interest, in streams like those of in-
terest, and using densities that match the stocking program,
then the results are likely to be irrelevant to the management
question. Additive experiments also frequently have been
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misinterpreted as evidence that hatchery fish are more or
less competitive than wild fish, but substitutive designs are
necessary to test this hypothesis.

Almost no studies that used substitutive experimental de-
signs suitable for testing relative competitive ability have
been conducted. Additional research using this design should
be of broad interest because it would quantify the ecological
cost of stocking hatchery fish versus rehabilitating wild pop-
ulations. For example, if a particular stock of hatchery fish is
more competitive than a stock of wild fish, stocking will
cause greater damage to the wild stock than if the wild pop-
ulation recovered to the same total density. Conversely, such
measures of the net effect of stocking hatchery fish, inde-
pendent of density, would allow hatchery managers to evalu-
ate the effects of different culture and release strategies on
hatchery fish performance. Substitutive experiments would
also be of interest to test specific hypotheses regarding envi-
ronmental or genetic effects. For example, the competitive
ability relative to wild fish of hatchery stocks obtained from
local populations or hatchery fish from supplementation pro-
grams could be compared with that of more traditional hatch-
ery stocks to evaluate their effect on wild populations. More
research using substitutive designs will also be necessary to
determine how general any differences in competitive ability
are across populations and species.

An important caution is that competition experiments can
be used to quantify the effect of hatchery fish on wild fish in
the short term, but when used alone, they cannot determine
if hatchery stocking will ultimately damage wild stocks. Even
if hatchery fish are less competitive than wild fish, hatchery
fish may gradually replace wild fish where they are stocked
every year because there is no feedback via mortality on the
number of hatchery fish added. When natural environmental
fluctuations result in low wild fish abundance, hatchery re-
leases are generally not reduced. A short-term numerical ad-
vantage of hatchery fish could overwhelm wild fish even if
wild fish are more competitive. Although stocking hatchery
fish may provide additional spawners that could help restore
small wild populations (McMichael and Pearsons (1998) and
references therein), the contribution of hatchery fish to re-
building wild populations has not been sufficiently evaluated
(reviewed by Fleming and Petersson (2001)). Furthermore,
surviving hatchery fish can damage wild stocks through ge-
netic dilution, mixed-stock exploitation problems, and dis-
ease transmission, even if, on average, they are less competitive
than wild fish. Recent studies indicate that stocking could
ultimately reduce total fish populations because hatchery
fish have negative effects on wild fish survival but also ex-
hibit low survival themselves (McGinnity et al. 1997; Flem-
ing et al. 2000; Einum and Fleming 2001). Measuring solely
the strength of competition between wild and hatchery fish
will not determine whether stocking is harmful to wild fish,
but it will help managers understand where the largest eco-
logical threats lie.
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