# EFFECTS OF TEMPERATURE UPON YOUNG CHINOOK SALMON 

# EffECTS OF TFMPERATURS UYON YOUNG <br> CHINOOK SALMON 

by

ALLYN HENRY SEYMOUR

A thesis submitted in partial fulfillment of the
requirement for tass degree ci

DOCToR OF : YILOSOHHY

UNIVERSITY OP WASHINGTON
1956


## UNIVERSITY OF WASHINGTON

## Date: July 19, 1956

We have carefully read the thesis colitled Effects of Temperature jon Fount Chinook Salmon submitted b
Allyn demy Seymour in partial fulfillment of the requirements of the Deere of Doctor of Philosophy
and recommend its acceptance. In support of this recommendation we present the following joint statement oi evaluation to be filed with the thesis.

```
    Vir. Seymomr has studied tile effects of water temperature
upon the early cerelomment ": the chinook solmon. He nas
appronched the rroblem lirst or evaluatine the eriocts of
di"forent temporatures neld constant tmronलhout the moriod
of Enrestimtion. A second sorios oi emperi ents wore run
by rearin- te eros for varrin}\mathrm{ Inn tho on foment 
water tempenotures mes bon clnm-ine thom to vamons constant
temperatums for the rovancer o the fine. A third mariss
Fas renroc ot varisble tommmounes. In this last series,
```



```
Gestern wasmin ton, the Endiat \iver in insiem Woshin ton
and Erom hie Snoramento fiver in Cali "omia in ordor to
ovlunte maciel di:"ere:aces in temoomture efoets. Control
lots were ran in all exporiments.
    Morow these exponimonts sn. Semmom nos comoned the
difiowent nethods on measumin% temuorat,rne ofiects and has
demonstreted a dilforence botucen roces in the efiect of
temperatire on rate of developmont as vell as tw eftects of
temperature on ruration oi atchinm roriod, montalit% rate,
aonomaliutes, rontr and momistic chorsoters.
    Nu. Semo:ar as demonetrntod lis noili ur to condact
oririnal exporimontal wor: nn: to onnlyse and evaluate the
resmits. botil his emorimental desirn and execution are
ercelient nod nis thesis is worthy o: accertanoe as a
Doctnmal Gissertation.
```

THESIS REDAN(; COMMITTER:


In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the University of Washington I agree that the Liorary shall make it freely available for inspection. I farther agree that permission for extensive copying of this thesis for schclarly purposes may be granted by my major professor or, in his ausence, by the Director of Libraries. It is understood that any copying or gublication or this thesis for financial gain shall not bo allowed without my written permission.


## ACKNONLEIDANENTS

The counsel and help given during the course of these experiments are gratefully acknosledged.

The experfments were conctucted under the guidance of Dr. L. R. Donaldson, chairman of the Supervisory and Readiner Combittees. Frrors and omsioions in the manaseript have been correctad Irom suggestions made by Dr. R. Van Cleve and Dr. A. C. Delacy, members of the Reading Committee. Valuable aid as to technques and mothods was received from Dr. A. D. Welander. Calculation of the threshold temperature and its confidence interval was suggested by Dr. D. G. Chapman and fir. C. O. Junge.

Chinoak galmon egge ware obtained from the Washington State Department of Flsharies through the cooperation of Mr. C. H. Ellis, Mr. S. Fallort and Mr. E. Flaher -- and from the U.S. Fish and Wildlife Serrioe with assiatance from Mr. C. Athanson, Mr. J. Pelnar and Mr. R. Burrows. Mír. Burrows also made available some of his umpublished data. Mr. P. R. Olson and Mr. J. R. Donsidson occasionally assisted in caring for the lots. Dr. R. Packer and Dr. E. Ordal mado pathological exeminations of the fry of Experiment III. The technique of radiographing gall fish was leaned from Dr. K. Bonham.

This research has been supported by the Applied FYsheries Laboratory, which is under contract to the U.S. Atamic Energy Commission.

The work of checking and typing the mamuscript and bibliograple was shared by Miss M. Chase, Misa G. Brewer, Mrs. M. PInyan and Miss M. Johmson.

TABIE OF CONTENTS
Page
I. INIRODUCTION ..... 1
II. PIAN OF EXPERTDENTS ..... 7
Experiment I ..... 9
Experimant II ..... 13
Roperiment III ..... 14
III. MATERIALS ..... 21
IV. METHODS ..... 25
V. BNVIRONMENTAL CORDITIONS ..... 34
VI. DISGUSSION AND RESULTS ..... 38
Rate of Embryological Development ..... 38
Gemeral Expresuions ..... 38
Constant Temperature Expeniments ..... 47
Altered Temperature Experiments ..... 65
All Experiments Carbined ..... 76
Mortalities ..... 84
Abmormalities ..... 89
Growth ..... 90
Meristic Charactern ..... 96
VII. SUMMARY ..... 114

## LIST OF FIGURES

FLure Page

1. Average Water Temperaturee by Weeks at the University of Nashingtion Hatchery, November 1950 to July 1953
2. Cninook Salman, Parents of the Experimont I Egg Lots10
3. Lot Tamperaturea for Experiment I ..... 12
4. Observed Temperatures by Days for Lote of Experiment II15
5. Predicted Temperatures from the Beginning of the Experiment to the Fingerling star for the Lots of Experiment III
6. The Controlled-temperature Hatchery Room, Fisheries Center, Universdty of Washington
7. The Average Temperature and Number of Days to 50 Per Cont Hatch for All Lots Reared at Constant Temperaturea
8. The Average Temperature and Rate of Dovelopment for Eggs of the Chinook Solinon from Green River for Experiments I, II and III51
9. The Relationship of Temperature to the Logarithm
of 1000 / Number oi Days to Hatching ..... 56
10. Three Eatimates of the Threahold Temperature, a, for Eight Lota of Exquriments I and II59
11. The Kolationshif of the Bêlehradok and Logiotic Equatione to the Rate of Development Data for Eight Lots of Experimente I and II
12. The Relationship of Tomperature and the Number of Daye to Hatching, to the Logiatic Curve and Its Reoiprocal for Eight Lots of Experimente I and II
13. The Average Temperature and Rate of Devolopment for the Eigge from Four taces oí Chinook Salmon in Experiment III69
Liet of Figures
(continued)
Pigure
14. Cumulative Percentage of the Number of Eigge hatched by the Number of Daya After the Start of Experiment III for Pour Races cP Chinook Salmon
15. Rate of Development and Temperature for All Lots, A11 Exferiments
16. Relationship of the Belehradek Equation and the Log istic Equation to the Rate of Devalopment Data from, 111 Lots
17. The Relationship of Temperature and the Number of Days to Hatching to the Logistic Curve and Its Heciprocal, for ill Lots81
18. The 5 to 95 Feroentile Range for the Hatching
Period of Chinook Salmon ..... 83
19. Cumulative Nortality in Per Cent by feeks
for Lots Reared at Constant Temperaturea
in Experimenta I and II
for Lots Reared at Constant Temperaturea in expertmonts I and II ..... 85
20. Temperature and Per Cent Mortality for Lots Reared at Conatant Temperatures ..... 87
21. Weight Curves for Experiment I ..... 95
22. Radiograpin of a Chincok Salman Pingerling ..... 99
23. fverage Number of Vortabrae and Temperatures for Lots of Experimants I and II ..... 101
24. Average Number of Vertobrae and Temperatured for Lots of Experiment III ..... 103
25. Temperature and Por Cent of Chino ak Salmon with Abnormal Vertebree for Lots of Experiments $I$, II and III107
26. Average Number of Dorsal Rays anc Temparature for Lots of Experiments I, II and III
27. Average Bumber of Anal Ray and Temperaturea for Lots of Experiments I, II and III

## LIST OF TABLES

Table Fage

1. Temperatures of Some Pacific Coast Rivers at theTime of spaming of the Chinook Salmon52. Surmary of Factors Ralated to Exieriments I, IIand III8
2. Measurement Data of the Parents of the Lots for Experiments I and II ..... 11
3. Mine ral inalysis of City and Well Water ..... 23
4. Comparison of the Daily Temperature Hange for theGreen and Jacramento Kivers and for ExperimentsII and III31
5. Cxysen Content of Water in Tanks and Troughs ..... 35
6. A Comperison of the Arrhenims, Van't Hoff andThompson Tequerature Coefficients39
7. Sumary of Tenperature Rate of Development Exper iments with Salmonidae Eggs ..... 46
8. Fater Temperature, Incubation Feriod and Fer CentMortality of Grean River Chinook Jalnon Eggain Experiments I and II49
9. Tenperature Coefricients and Threshold Tenpera-tures for Chinook Salinon from Green RiverReared at Constant Temper utures (2 pages)
10. Water Temperature, Incubation Feriod and Per Cent Mortality oi the Cninook Salnon EEES of Experimant III ..... 67
11. Observed and adjusted Tamperatures and Days to 50 Fer Cant Hatch for Chinook Salmon Egga Feared at Changing Temperatures, ixperiment III ..... 68
12. Estimated Threshold Temperatures and Confidence Limits for Experiments I, II and III ..... 73
13. Temperaturs Sumation Constant, $k$ ..... 7515. Water Temperature, Incubation Fariod and Per CentHatch of Experiment I Sublote77
List of Tables(continued)
TableFage
14. Water Teaperature, Incubation Feriod and Mortality of Chinuok Salmon. Eggs Kared at Constant Temperatures at the Entiat Hatchery (Burrows' Data) ..... 88
15. Abnormal Fry in Lots Reared at Constant Tempera- tures ..... 91
16. Average Weights and Lengths of Eggs and Fry from Expertment I ..... 92
17. Vertebral Counts of Green Hiver Chinook Salmon Reared at Constant and City Vater Temperature ..... 100
18. Vertebril Counts of Sacramento, Skagit, Greenand Entiat River Chinook Salmon ofExperimont III102
19. Numbers of Dorsal Rays for Chinook Ssimon in Exper inents I , II and III ..... 109
20. Numbers of Anel Rays for Cninook Salmon of Experiments L, II and III ..... 112

## I. IMTRODUCTION

To the figh living in the Colmbia River and other Pacific Coast streams, ohanges are occurring in the enviroment because of the impound ment of water for hydrolectrio power, the increase in pollution, and the diversion of river water for irrigation, In the future the use of river water to 0001 nuolear reactors also may change the enviromment for river inhabitants.

One of the onviromontal factors that is ohanged is water tamperature, a factor to which fish, a poikilothermio animal, respond readily. Usually the ohange is to warmer water and temperatures that are not favorable for the survival of salmono an oxcoption 1 a the shasta Dam on the Saoramento River where the withdrawal of water from the storage reservoir is from level that is below the thormoolino. As a onsequence, river temperatures below the dam during late sumer are now as muoh as $20^{\circ} \mathrm{F}$ lower than formerly (Cope, 1949 and 1952) and salmon anc trout production has increased (Moffott, 1949; Smith, 1950).

The ohanges that are ooourring in the Columbia fiver and in other Pacific Coast stroams may subject salmcn oggs and young to unfavorable water temperatures. a condition whioh also oould oocur fran the early or late arrival of the parent fish upon the spawning ground, or from aonormal weather oonditions. These are some of the reasons for aooumulating more information on the influenoe of temperature upon anlmoneges and young, Speoifically, the objeotives of these oxperiments were to measwre the effeots of tomperature upon ohinook salmon, onoorhynohus tshawytsohe (Falbaum), in regard to:
(1) the rate of enbryological development
(2) mortality
(3) occurrence of morphological abnormalities
(4) growth rate
(5) the determination of the number of vertobrae, dorsal fin rays, and anal fin rays.

The period of observation from the egg to the fingerling stage. Objective (5) above mas inoluded for the purpose of making a contribution to the limited information now avallable on this subject for the pacific ealmon and because of the ourrent interest in the use of meristic oharaoters as on of the moans of identifying the raoial origin of salmon now boing ought in the off-shore waters of the Narth Pacifico After Heincke's investigatione in 1890 meristic characters have been used frequently to identify racee (see p. 96). Hoincke identified groups of horring as raoes whon the differense in the oounts of vertebrae between groups was statigtioally algnifloant.

Fariation in the number of vertobrae betweon individual fish is a consequance of both genotioal and onviramontal faotors. In field samples neither genotypical nor phonotypical variation oan be determined beause the past history of the individual is not known and therefore the vertebral count of the parente and the andramental factors influonoing vortebral formation are not knownc However, in laboratory expertments avoh as these, amestimate of gonotypical and phonotypical variation oan be made and this information is important to intorpretation of reaulte of racial atudies based on field camples.

Fine ohinook salmon were seleoted for oxperimentation beoase they are economioally important, are reared extensively and are available。 In the Columbia River and othor rivers of tho west oost of the United States that are most affected by dams, pollution and water diveraions, this speoies is of ten the most important. Over 30 million fry and fingerlings were reared and released by the washington State Department of Flsheries in 1953. In addition, this spooies is readily available for experimental use, oither from the Fisheries conter, University of Washington, or fram nearby hatchories of the Washington state Department of fisheriese

The ohinook salmon, also known as king, spring, quinnat, tyoe or blacknoutn, is the largest of the Pacifio coast salmon and uevally spawns in the large rivors. Spawninf occurs as barly as August in Alaska and as late as Deomber in California, the extrames of its geographioal distribution. Tho oges are depositod in a nest in the gravel of the atream bed that has been duf by the fomale, are fertilized by the male, and then are covered with gravolo mile in the gravel, the eges hatoh. The young fry work downward into the stream bed, as they are negatively phototropic. When most of the yolk has been used, the fry enarge fram the gravel and som start, to ceek their onn foot: The seaward ripration may bogin immodiatoly, but often is dolayed until a few inonths after feedinf, and occasionally as muoh as a jear. mea ohinook salmon live in the sea until maturity. whion is usually at an age of 3 or $4 \frac{1}{2}$ yoars, but may vary frem $2 \frac{1}{2}$ to $6 \frac{2}{3}$ years. At matiunity the
*"Fry" is the stage which follows hatohing and during whiah the yolk sac 1a absorbed; when fesdine berins, the fry becanc "finforling3,"
ohinook salmon, weighing iv to 50 pounds, returns to $1 t \mathrm{~s}$ natal stream to spawn and die (Clemens and Wilby, 1946)o

Although the differenoe in spawning time from Alaska to California may be 2.6 groat as four or five monthe, spaming ocours when stream temperatures are falling. Jordan and Everman (1896) write, "...it spaws In August and early Septembar whon the water has reachod a temperature of about 54 F." Tampuratures observed at the time thet ohinook salmon are spaming in some streams of British Columbia, Weshington, Orogon, and California are reoordod in Table l. The water temperature during inoubation of the $0 g$ is desoending, with minimum temparature occurring shortly bofore or aftor hstohing, and is risinf during the late iry and early foeding stages. Tho water tomporaturo oyolo in the hatohery at the Jniversty of ahington as show in Figure 1 is typioal of the annual whter pattorn of stroases in wiloh ohinook salmon spawn in the Puget Sound region, However, many stroams in other areas of the Paoific Const have minimus water temperatures of $32^{\circ}$ or $33^{\circ}$.

TABLE 1

Tenperatures of Some Pacific Cuast Rivers at the Time of Spaming of the Oninook jaimon


[^0]

## II. PLAN OF EXPERI MENTS

Tho offeots of tomparature upon young ohinook salmon have beon observod in three wxperiments in three suocessivo years-1951-62. 1952-53. and 1953-54. These experiments diffored in four prinoipal aspots, (1) water temperature pattorn. (2) souroo of water, (3) raaial s took, and (4) number of pairs of paranta (Table 2).

Iwo of the many possible temperature patterns were considered; temforatures more eithor maintained at a censtant lovel ar wore altorod throughont the experiment in a manner similar to that which occurs under natural conditions. Ideally, the axperimontal tamaratires should bo those to whish the fish are oxposed in nature, for it is possible that sormal development of eges and fry is adfusted to the natural water temperature pattern. The natural water temperntures at the time of the doposition of eges in he ravel aro doclining and continue to docline durian the inoubation poriod. Hetchiar occiurs about the time tiat the water temperatires reach their lcwest level in the annual temporature cyole, but amergence of the fry fron the prarel doos not occur until water terporatures are increasing However. In an exporiment in which the tomperature is not maintained at a constant lerol, the averago temporature may not be relatgd to the observed effoct if the oharaoter being chserved is influonced by temperature for only part of the observational perini. Because the oritioal perions for the chinook salmon were not kncwn, temperatures of the lots for the first two experinonts wore sonstant; for the third oxperiment temperatures were altered throughout the experiment in a manner somowhat similar to the temperatures that ocour
TABLE 2

Tap water as received at the hatchery
$* 34,40,45,50,55,60,62,65^{\circ} \mathrm{F}$
$\# 45,50,55,57 \frac{1}{2}, 60,72,65,677_{2}^{\circ} \mathrm{F}$
$\#_{45,50,55,60,65}{ }^{\circ} \mathrm{F}$
under natural conditions.

## Enperiment I

In the fisst experiment oight lots were reared at constant temperatures in water from the oity main, and all egge were teken from one pair of chinook salmon of the Croen River raoe. The experimont wa initiated November 15. 1951, and conoluded Ootober 2, 1952,

A pair of mature ohinook salmon from the Groen River Hatchery of the FRashington state Dapartment of Pisherins, twonty-ifive miles southeast of Santtie, ras trensportod to the Univorsity of shinpton in a 11vetank and thon spawnod. Tho pair usod for spawninc arrived durinf the last week of the 1951 run of chinook sslmon to the Green River Hatchery, whioh is located at soos creak. At this time the daily tomperature of Soos Croek varied from $42^{\circ}$ to $46^{\circ}$ F. After heinf spawnod, the pair were photofraphod (Fif, 2) and aizo measurements and counts of meriotio oharacters were made (Table 3).

The ofges from this pair ware divided into of rht oxporimental and four control lots averafine about 660 per lot, one of the eight experImontal lote was plaoed in eaoh of the following conctant temperatures: $34^{\circ}, 40^{\circ}, 46^{\circ}, 50^{\circ}, 65^{\circ}, 60^{\circ}, 62 \%^{\circ}$ and $65^{\circ} \mathrm{F}$. A maxtmum temperature of 650 was ohoagn beoruse in an earlier trial oxperinent all erpa at a sonstant temnerature of $73^{\circ} \mathrm{F}$ and 67 F had died. The oontrol lote wero reared at the water temporature as received from the ofty main, which Wes $55^{\circ} \mathrm{F}$ at the berinninf, of the experiment and $41^{\circ} \mathrm{F}$, the low for the yoar, at time of hatchinge Graphe of tho tamparature history of the lots of the first anperiment are anowi in Figure $3_{0}$


## ThBLE 3

## Measurement Data of the Farents of the Lote for Experiments I and II

|  | Experiment I |  | Experiment II |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Male | Pemale | Male | Female |
| Weight (spamned), kg | 3.83 | 8.54 | 8.87 | 9.14 |
| iength (fork), cm | 95.2 | 92.3 | 94.0 | 95.2 |
| Vertebrae | 67 | 68 | 67 | 66 |
| Dorsal rays, all | 13 | 14 | 13 | 13 |
| inal " " | 17 | 18 | 18 | 18 |
| Branchiostogal reys | 15 | 17 | 14 | 16 |
| Uill rakers, first arch | $9+13$ | $9+12$ | $10+15$ | $9+13$ |
| Pyloric creca | 155 | - | - | - |
| Scales, lateral line | 142 | 139 | 134 | 140 |
| " above ${ }^{\prime \prime}$ | - | 30 | - | - |
| " bolow " " | 31 | 29 | 30 | 30 |
| Eises, number |  | 7024 |  | 6864 |
| " weight before water hardening, kg |  | 3.18 |  | 2.83 |
| " diameter after water hardoning, cm |  | 0.93 |  | 0.89 |
| Age (scales) | $3+$ | $4+$ | $3+$ | $3+$ |



Figure 3. Lot Temperatures for Experiment I

In this experiment eight sublots of 100 effs each were removed fram the controls to oither a higher or lower temperatire. After $3 \frac{1}{2}$ weoks at oity water temperature three of the sublots were transferred to onstant water temporstures of $60^{\circ}, 62 \bar{x}^{\circ}$ and $65^{\circ} \%$. Three othar oontrol sublots wore tranaferred after 2, $2 \frac{1}{2}$ and $3 \frac{1}{2}$ moaks at city wator temperature to a constant tomperature of $34^{\circ} \mathrm{F}$. Ino additional sublots were held at $40^{\circ}$ and $45^{\circ} \mathrm{F}$ for four woels and were ther mored to a conatant temperature of $60^{\circ} \mathrm{F}$ 。

Later, another seotion was sdded to the firet axperiment for the pur pose of observing the offects of temperatures of $60^{\circ} \mathrm{F}$ and higher upon fingerlingse At these temperationes none or the original lots survived to iegding. To esteblish this part of the experiment, the control lots weare pooled on May 1, 1952, and four random lits of 100 eaon were with $=$ drawn, of these foirr: one was left at the temperature of the city pater and the otiners perg transforred, after graduai tompering, to oonstant temperatures of $60^{\circ}, 67^{\circ}$ and 749 .

Experiment II.

The second axperiment ciuplicated the first by the use of one pais of ohinook amon fram the Greon River race and by tho incubation of the og5s in the same water supply and at oonstant temparatureso

The seonnd experiment was started on Cotooer 18 with a pair fram the early part of the 1962 run which was late in arriving at the Green River Hatchery because of warm woather (Fallert. 1952). The temperature of the water at the time the fish were taker for spawning was $52^{\circ} \mathrm{F}$ 。 Size measurements and counts of meristio oharacters of the two parents
for the 1952 exporiment are given ir rable 3 .
Constant temperaturea in the eight experirental lots were $45^{\circ}, 50^{\circ}$. $55^{\circ}, 57 \frac{1}{2}, 60^{\circ}, 621^{\circ}, 65^{\circ}$ and $67 \frac{12}{2} \mathrm{~F}$ 。 These temperatures differ fram the first experiment by the ondssion of the $34^{\circ}$ and $40^{\circ}$ lote and the addition
 but sinoe Experiment II startod a month earlier than Experiment $I_{0}$ the inoubation temperature of the controls was higher in 1352. The city water temperature at the beginiang of the oxperirient was $61^{\circ} \mathrm{F}$ and at hatching was 55 F. the averafe inoubation temperature for the oontrol lots belng 11 derrees hif her than $1019 S_{1}$. The ternporature ristory of tho Experiment II Lots is shown in Figurg 4 .

Experirront II was oorcluded umexpecterly on December 28 by an aocident that oaused a meat increase in mortalitios in ail lots. The cause of death was a hi hh oH of the water sipply created bj a change of charcoal in the filtor system. The details ci this acident have been reported by Seymour and Donaldson (1953), At the time of the acoldent the lot at lowest tamporature had just, completod hatohinF, The experiment Was oonoluded at this time, as there was 100 per cent mortality in some lots and injury of unknown extent to those that did survive.

Brporiment III

The third experiment was basionlly different fran Experimente I and II. The temperatures were ohanging rather than constant, the mator was from a new source, a well that had bean drilled to provide water of lower temperature for the hatchery; eges from four raoes were ueed, and the eggs for one raoe wore from one or more pairs of parentso on septamber 11,


1953, the experiment was started and was oontinued until May 8, 1954.
For the purpose of ovaluating racial differenoes causod by temperature, especially the rate of development and moristic oharacters. eges were obtained from four rivers: the skagit, in northwestern phanington; the Entiat, a tributary to the Columbia River in eastern pashington; the Sacramonto, in California; and the Grean, near Seattle (from whioh egEs were obtained for the two oarlier axperiments). Unsuocessful efforts were made to obtain egea from Alaska, first from the Naknek River, Bristol Bay, and later from Aloxander Croek noar Anohorago. It was considered desirable to use Bristol Bay fish as representative of the races of ohinook salmon near the northern limit of their distribution. Because the - ges from Alaska were not available, eggs from the early Slagit River rum wore obtainod.

The eggs from the Skagit River ahinook salmon were taken on September 11. The parents, three females and two malee, wore gaffed fram the Marblarount apaming grounds. The water tomperature at time of egg-taking was $62^{\circ}$ F. After fortilization and water-hardening the eggs were combined into one lot, placed in large thermos jug and taken to Seattle. Water temperature in the jug upon arrival in Seattle four hours later was $59{ }^{\circ} \mathrm{F}$. One-half of the eggs were then forwarded to Mr . Burrows at the U. S. Fish and wildilfe Fish Cultural labaratory at Entiat, 阬sington, and the remaining half divided equally into five experimental and two oontrol lota of about 500 egge each.

The egge from Entiat Rivar wore obtained on Dotober 8 fram aingle ohinook female about 15 pounds in weight. After fertilization the oggs were water-hardoned for threo hours and were then placed in the seme
bype of thermos jup as had been used for the skagt River eggse The Entiat Ri*er water temporature was $52^{\circ} \mathrm{F}$ at this tine. Tho jug was preoooled with orushod loo and, after boing ililed with ogta and water, was oovered Wth insulating matorial. Jpon arrival of the jug in seattle Iour hours later, the water temperaturo inside was $49^{\circ} \mathrm{F}$, T ho eggs were divided equally into six lots of sbout 580 eaoh.

The eggs of the ohinook salmon fram the Sacramonto and Green Rivers were taken Cotobar 30 . The Sacramento eggs were spawned in the morning at the Coleman Station and flow to Seattle the same day. One-half of these gge was teken to the Fish Cultural Laboratory at Entiat. The eges were shipped from California in a seoial oontainer with ice, and upon arrival in seattle the temperature about tho oggs was $38{ }^{\circ} \mathrm{F}$. On the day of spaming the tomperature of the Saoramento River at the plaoe from which tho salmon were takon varied fram $52^{\circ}$ to $544^{\circ}$. Four pairs of chinook salmon wore used and the aggs wero mixed bofore division int experimental and oontrol lots of about 680 each. The fish in the Sacramento River on Ootober 30 were the firgt of the fall run of ohincok salmons the peak of the season's rum was expeoted later.

The Green River egfs were taken fram one femalo and fertilized by one male. Ihe oges were transportod to the Univeraity in a thermos jug in whioh they were retalned until the Sacramonto oggs arrived. The temperature in the jug inoreased during thi period from $52^{\circ}$ to $59^{\circ} \mathrm{F}$. Both groups of oggs ware handlod in the same manner after being removed from the shipping containers. The average number of Green River eggs per iot was about 450.

The temperature pattern ohosen was that which olosely resombled the pattern expeoted in nature. The average temperature af the oity water
in the hatohery of the Sohool of Fisheries from November 1950 to July 1953 was the pattern (Fig, l), but the aotual temperatures were at a Lower level for some lots.

For the five axporimental lots the starting temperatures were $45^{\circ}$. $50^{\circ}, 55^{\circ}, 60^{\circ}$ and $65^{\circ} \mathrm{F}$. Arter the start of the oxperiment the water was cooled one degree every five days to a temperature of $34^{\circ} \mathrm{F}$, The eges were held at that tomporature for twenty days, after which the temperature was increased at the rate of one degree every five days. The temperature history of the Experiment III lots is shown in Figure 5 .

The water source for the third experiment was from a well, whereas oity water was ueed in Exporiments $I$ and II, This was of importance in two reapects, first, the tamperature of the control lot whioh was reared in the tap water was practiaally constant, with a range of only two degrees, from $56^{\circ}$ to $54^{\circ} \mathrm{F}$ : Sooondly, this water oarried a high organic load whioh resulted in the very rapic asounulation of slime molds, algae, and protozoqns on the oges, in the tanke and troughs, and in the soils of the cooling system. This nocessitated more handilng of the oges than Was desirable and interfered with the flow of water in the refrigerated $\operatorname{tank} 8$.

By using ultraviolet ilght an effort wes made to control the slime molds, algas and other organiams growing on the bottom and sides of the troughs and tanks. Three ultraflolet lights were placed across the head of a trough without fish, fow inches above the water. The water depth was four inches. Aftor three weeks the mess of organisms beneath the lamps was only slightly less than in other parts of the troughs therefore the use of the ultraviolet light was disoontinued.


Mortality in all lots of Experimont II in the late fry and fingerling stages was unususlly high, and although the spooific reason was not found, the oquse was belleved to be either direotly or indireotly assoofated with the woll wator. Mortalities were especially high in the Green River eggs and, moreover, they oocured earlier than in the other lots. Indicating that other factors associated with the sondition of the egge themselves were contributing to the mortalities.

Two lots, Sis 6 and E 6, whioh were reared inadvertently under abnormal conditions are not inoluded in the disoussion of results obtained from the other lots. At the beginning of the experiment these two lots were in trough containing well wator in the main hatchery and wero not transforred to the controlled-temperatura hatahory until November 14. On Ootober 29 the dissolved oxygen in the mater flowine into the trough With Lots $8 k 6$ and E 6 was found to be only 3.0 ppm . This condition was correoted the following day. However, by that time Lot Sk 6 had been in the low-oxygen water for 48 days and Lot $E 6$ for 21 days.

The significance of low axygen tension was not appreciated until the data wore analyzed somo time after the oonolusion of the experiment, Then it was found that in the two lote affected the incubation period was 18 per cent longer, the increase in the average number of vertebrae was as much as 2.6 , and the increase in abnomal vertebrae was about 10 per oent.

The hatohory and equipment of the sohool of Fisheries in Room 124, Fisherios Center, used for these oxperiments (Fig. 6). The roam is prooided with aix tanks and four troughe with tap water and heated tap Water supplied to each. Refrigerated tap water is supplied to four of the $\operatorname{tanks}$.

The tanks are made of baked onamol with a Thermo-pane glass front and are 60 inohes long, 23 inohes high ard 12 inches deep. Protection from temperature ohange was providod by two inohes of cork on the back, bottam and sides, an insulated lid on top, and the rihermo-pane front. The oonorate troughs aro 15 reot longa 12 inches wide and 8 inches deep.

Water. For the first two experiments the supply water was from the oity main. To remove ohlorine gas that is added ooosaionally to the city water, all water for hatohery use was passed through a oharooal filter

In Experiment III woll water roplaood oity water. The temperature of the well water was $58^{\circ}$ to $58^{\circ}$ F, a favorable temperature for chinook salmon. Aalyses of both the oity and woll water is given in Table a.

Far tho low-tomperature tanks the tap water was oooled in a Temprite Instantancous Cooler and temperatures down to freezing were available. Heated water was provided by running mater through a ooil in a steam jacket. Intormediate temperatiores were obtained by mixing marm and cool water, using a shower type valve, elther Powers model 34504 size C-20 or Powern model HVE .

Trays. A tray was dealgned so that the ogrs could be kept in order and exmined indifidually, if neoossary, with minimum of handing,


Figure ó. The Controlled-temperature Hatchery Room, Pisheries Center, University of Washington

TABLE 4

Mineral Analysis of City and Fiell hator

| Date | City Weteric 1/7/5:2 | City Watur* 1/5/53 | $\begin{aligned} & \text { City } \\ & \text { Water:* } \\ & 1 / 29 / 54 \end{aligned}$ | $\begin{aligned} & \text { Well } \\ & \text { Water } \\ & 1 / 29 / 5 \mathrm{~L} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | farts per ':illicri |  |  |  |
| Total Solids | 42. | 4. | 4:5. | 337. |
| Silica ( $\mathrm{SiO}_{2}$ ) | 2.1 | 11. |  |  |
| Iron ( Fe ) | U.VE | . .04 | 4. | 25. |
| niuninum ( $\mathrm{A}^{\text {a }}$ ) | $\cdots 2$ | 0.01 |  |  |
| Calcium ( Ca ) | 6.8 | 8.8 | ?. | 12. |
| Magnesium ( ${ }_{\text {明) }}$ | U.? | 1. | 2. | 15. |
| Fotassiun ( $K$ ) |  | 0.3 |  |  |
| sodiun ( Na ) |  | 1.88 |  |  |
| Bicarbonate ( $\mathrm{HCO}_{3}$ ) | 25. | 24. | (i). | 117. |
| Sulphate ( $\mathrm{SO}_{4}$ ) | 1.9 | 2.9 |  |  |
| Unloride (Cl) | 1.2 | 1.06 |  |  |
| Total Hardness (as $\mathrm{CaCO}_{3}$ ) | 19.8 | 26.1 | 23. | 27. |
| flkailinity to rnenolphthaiein | 0. | $c$. |  |  |
| " " : Aetnyl Orange | 26. | 24. |  |  |
| pH | 7.2 | 7.4 | 7.6 | 7.4 |

[^1]The tray sonsistad of giass rads sujpertai in a 10- by 12-inoh woodon frames The rods were spaced so that tho oges ware supported, but the larvae, upor hatohing, droppod through. One tray held about 600 ohinook saimon oges. 20 rows of 30 eges each.

Damboards. Since in the third experiment there wore as many as four different lots in the same tank, it was necessary to divide the tank into oompertments and to have tho damboard between oompartments impassable to the iry and fingerlings. The oapartments wore made tight by wedping a damboard against a half-1nch sponge rubber gasket on the sides and bottum of the tank. The damooard was made of two platos, one inoh apart, whioh were perforated at the top on the upstream side and at the botton or the downstream side. Suocessive dambomrds differed in hesght by one-haif an inoh, with the higher damboard nearer to the head. of the tank. Building and arranging the damboards in this manner oreated oiroulation of water throughout each ompartment.

Thermographs. Tank and trough temperatures were oonstantly recordel on ofroular ohart, a thermogran, by moans of a seven-day Briatol Re= oorder. Temperatures wore ohooked dally with a oalibrated meroury thermometer which could be read to $0,1^{\circ} \mathrm{F}$, and an adjustment was made to the reoording peri if the pen was in error.

## IV. METHODS

Egg-taking. In Experiment I the ogre were taken by inoision and wero fertilized in a pan without mater. After fortilization the ogge worg divided into equal lots and plaoed in pans in tho tank in which thoy were to be reared. During the next two hours the oggs were waterhardenod and temporod with the temperature gradually changing from that of the eggs at time of fertilization to that af the rearing temperature, the greatest change boing 14 degrees Fahrenheit. Tho eggs were then placed on the glass rod trays. In Experimonte II and III the eggs were water-hardoned 1 c two hours at the site of ogg-taking and then wero transported to the sohool of Fishoriea. Immediatoly after arrival at the School they were difided into lots and tempered for two to four hours to tho roaring temperaturase

Handling. Eggs and fry wore moved only when absolutely nocessary. The tanks were oleaned with a siphon and the dad egga and young were removed without disturbing the ramaining oggs or fry. Except for the removal of the oight sublot: In Exporiment $I$, the oges and fry of Experinonta I and II were undisturbed. As mentioned above, this was not true In Experiment III. Acoumulation of organio debris and mud made it necessary to agitate tho oggs gently about once a week to prevent smothering. Also, some agg lots were transferred from one tank to another during the eyed ogg stage。

Mortality reoords, Mortality was oaloulated from the number of eggs and young removed after the first day. The ramovals on the first day were mostly infortile egga. Doad egge were ramoved daily, but ainoe
death of an ig is not necessarily imeadiately apparent; mortality palues for any one day during the ofg stage may aotualiy be greater than shown in Tailes 9 and 21. This souroe of error is not present after hatohing.

The oumulative mortality was aloulated by weaks for each lot. The losses were separated into two catagorles; one astegory ras natural mortality, the other removals and aooidental deaths. The oumulative mortalIty took into accoint losses iran both categorios and was omputed for each seven-day period. Tho oumulative mortallty for weok $n$ was the sum of three items, (1), the ouminative mortality for wosk n-1: (2), the sum of the dally natural mortalities for wook $E$, and (3) , the natural mortality that would have cocurred in weok namong those removed for aamplas or killed aocidertally. Itam (3) was aloulated by multiplying the natural mortality rate for weok $n$ by the sum of the number of individuals that were remored for samples or had died aocidentally during week $n$ and the number of individuals that would have survived to the and of week n-1. having proviously been removed for semples or having died aocidentally.

The per oent cumulative martality was equal to 100 times the oumulative mortality divided by the number of efge at the start of the oxperiment.

Sortallty for all stages was caloulated in this manar. Mortality to the 50 per cont hatohing stage did not inolude fry mortalities for thone weoks in wini on there were both egg, and fry mortalitieso

Estimation of the time to hatohing Hatchilig was dofined as the tine when both the head and tall were free of the sholl. At both high
and low temperatures only the heada of many larvae would break through the shell and the larrae evontually would dio. Suah larvae were oonsid= ored ogg mortalitios and were not counted as being hatohed.

The time to hatohing was arbitrarily soleoted as the time when 50 per cent of the eggs had hatchod--the median of the hatching period-" and oould not be determined until ocmpletion of hatoing, other choices would have been the time to the ifrst hatoh, the last hatoh, the mean of the hatohing period, or the mode of the hatcing period, At normal temporatures the ohoice would have made little differenoe. since the hatching period is short, At low tomporatures the hatohing period of same lots was more than one month. with pori d of no hatching intervening between the axtrame valuess therefore the time to hatching of either the first or the last egg was oonsidered an inaypropriate estimate of the time to hatohine.

The hatoh of eggs mas oounted daily at 11 am. from the daily hatching reoords the time to 50 per oent hatoh was oaloulated to the noarest 0.1 of a day, the last signifioant figure being detormined by innear interpolation. By this method of estimating time of hatching the orror is relatively greater in those lots with the shortest hatohing time, i.e., tiose at highest temperatures.

Estimations of average temperature. The temperatures could not be oontrolled perfeotly and therefore it was nooessary to measure the temperature fluotuations in order to have a reliable estimate of the average temperature for the period of observation. The temperatures were recorded on thermograms from whioh the avernge temperatures were caloulated, Since the thermometers attaohed to the uifing valves were calibrated in

Fainowheit units, the thormograme were calibrated in the same units.
"he average temperature was caloulated with the acouracy allowable under the oonditions of the axperiment. The reliability of the thermometer, the aocuracy of the thernoprams. the temperature chanfes at various positions on the ogg tray, and the methods of oaloulation all influence the acourady of the estimates of average temperatures, The thermometer used to make the daily temperature readings and to oorrect the thermograms was acourate to 0.1 \%i the thermograms oould be read to the nearest $0.2^{\circ} \mathrm{F}$; and the ereatest temperature difference botween verious positions on the ogg tray was $\mathrm{O}_{0} 2 \mathrm{~F}$. A graphioal method and an arithmetical method wore used to astimate average temporaturos. but the arror in oither method was not measured. However, the total error from all aouroes in the caloulated average tamperatures is beligiod to be leas than $0.5^{\circ} \mathrm{F}$. Estimates of average temperatures derived by moans of oaloulating areas under the thermogram or as derived arithentionlly from daily averages ovar short intorvals are more mocurate than averagss from daily maximum and minimum tomperatures. For Experiment I average tomperatures were estimated by computing the area onclosed by the thermogram. From the aren, whioh was oomputed with a planimeter, the avarage temperature for oh seven-day period was road diroctly from a tablo. In the table the areas enclosed by oiroles made by various oonstent temperatures are 11sted. For oonstant or naarly constent temparatures the planimeter valLes are approximately corroot, but for fluctuating tamperatures there is an arror because the areas of the oiroles do not ohange linearly with temperature。 The planimeter method was ohosen for the first year's experiment, as the temperatures were nearly consiaist, espeoialiy duriag
inoubation.
For Experiment III daily average temperatures wero determined arithmetioally from tamperaturga diuling short intervals in which there was oither no ohange of temporature or a oonstant ohange in temperature. To dotermine the dally average, temperatures during eaoh interval. weighted by the number of hours of eaoh interval, wore averaged, For example, if the temperature during the first tweive hours of the dav was constant at $50^{\circ} \mathrm{F}$, then steadily rose during the next three and a half hours to $56^{\circ} \mathrm{F}$. then deolined steadily to $52 \sigma$ during the following two hours, after which the temperature remained constant for the rest of the day, the daily average temperature was oaloulated to be $\frac{(12 \times 50)+(3,5 \times 53)+(2 \times 54)+(8.5 \times 52)}{24}$ or 51,40 .

To examing the differgnoe in average temperatures that would oonir from the two mathods deseribed, oifht, thermograms wore selootod in six of whioh the temparatirs variation was avera;e (smonth thermorran) and In two of whion it wes oxtreac (irregulai ,hormograil. Tamperatures oal-
 tamporatures oaloulated arithonetically sand tine orror was the came for both snooth and fregular thermoframs. Althousin sumi iar resulte were obtsined by the two methods, the mathod oi arithretioally ave:aping daily tempersturgs, whish is more teadious than the ylanimotar method, was used t. caloulate avaraje tameratures for the sxperiment II data. There is no prautioal way of estizating the varianos of the tampar atires thest ware recorded in Fixerinants I and II, The rarianoe was probably not froat, as tomparatures were usually maintained within one
degree Fahrenheit of the desired temperature oxoept on 000 sions when the refrigerated wator supply was reduoed or out offo This oocurred when 10e or organio material socumulatod in the oolls of the cooling unit and Whon there was a power failure to the refrigeration unt. The shutting off of the refrigerated water was most fequant during Experiment II and ooourred four times during the experiment to the tank receiving $34^{\circ} \mathrm{F}$ water. An estimate of tho varianco of the dally average temperatures oould be made, but this would not indioate temperaturo shook, as usually the deviations from the temperature pattern were of only a fow hours" duration and ohanged tho dally average relatively littlo. Although the tomperature shook effeot from daily temperature ohanges is not known. a oomparison of the daily maximum-minimum temperatures of the experimental lots with maximumanimum temporaturos in the Groen River (Ellis, 1953) and the Saoramento Kiver (halliah, 1901) shows that the oxperimental lots wore not exposed to any greater daily temperatiro ohanfes than oocur in nature (Table 5).

Proservation. Beiore being preserved, most specimens were placed in urothane. Thoy wore then measured, wolghod and radiographed. The preserving fluld was 4 per oent formaldehyde with 0.7 per oent NaCl.

Radiographs. Counts of vertebrae and fin rays were made from radiographs and from stained specimens. All the fry and fingerlings that were seleoted for oounting were radiographed, but the radiographs were not readable for some of the fry with skelotone that had not yet ossified. These fry were then stained and the vertebrae and fin rays in many could be counted.

A Comparison of the Daily Temperature Kande for the Green and Jacranento Rivers and ror Experiments II and III

|  | Ḡreen <br> Oct. 1952- <br> Luy 1953 | Sacramento <br> sept. 1890- <br> Feb. 1899* | $\begin{aligned} & \text { Ex. II } \\ & \text { Cct. } 1952- \\ & \text { Jan. } 1953 \end{aligned}$ | $\begin{aligned} & \text { Exp. III } \\ & \text { Sept. } 1953- \\ & \text { May } 1954 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Temp. Renge, ${ }^{\circ} \mathrm{F}$ | Number of Days |  | Number of Tank Days |  |
| 0.5 | 2 | 1 | 661 | 902 |
| 1.5 | 11 | 2 | 120 | 220 |
| 2.5 | 68 | 12 | 19 | 72 |
| 3.5 | 30 | 27 | 10 | 40 |
| 4.5 | 55 | 14 | 3 | 19 |
| 5.5 | 18 | 14 | 1 | 18 |
| 6.5 | 35 | 10 | 1 | 5 |
| 7.5 | 13 | 1 |  | 5 |
| 8.5 | 8 | 1 |  | 7 |
| 9.5 | 2 |  |  | 2 |
| 10.5 | 1 |  |  |  |
| 11.5 |  |  |  | 2 |
| 12.5 |  | 2 |  | 2 |
| 13.5 |  | 1 |  | 3 |
| 14.5 |  |  |  |  |
| 15.5 |  | 3 |  | 2 |
| 16.5 |  | 1 |  |  |
| 17.5 |  | 1 |  |  |
| 18.5 |  |  |  | I |
| 19.5 |  | 2 |  | 1 |
| 2 C .5 |  |  |  |  |

* Only fuur observations Ncv. 17 - Feb. 18

For radiographs of small fish sort radiation of high intensity is needsd. Sharper and olearer radiugraphs oan be obtained from an $X-r a y$ diffraotion unit than from a dagnostlo type of tube beoause the beam of X-rays is smaller and there is less secondary radiation from the wind ow (Bonham and Bayliff. 1953). A watar-oooled Maohlett 0-2 X-ray Diffrao= tion Unit with a oopper target and a beryllium window was used in these oxporiments.

Kodalith Ortho Type 2 film produoed good resulta and, boing insensitive to red light, was converient to use. A shoet of iflm placed in a black, light-proof envelope was positioned beneath the x-ray tube and the fiah arrangec on a shost of collophane resting on top of the film onvelope. The fish were blotted dry and oovered with a sheet of cellophane to reduce furtior drying whion sometimes rosuitad in movement of the fish during sxpesuro.

A typioal exposure for 30 two-inoh itish on a sheot of 5 - by 7-inoh film with the window 24 incheo fram the film and the uait operating at 50 PKV (peak kilovolts), 12 MA (milliamperes) anc full wave reotification was 4 minutes. The film was doveloped for $40-50$ soconds in Doktol diluted with two parts of mator. For lareor fiah (fivo-inoh) Type $M X-r a y$ illm was used in orter to shorton exposure time. With the tube at 32 inohes and operating at 50 FKY and 12 MA , exposure time was 25 seconds and dovelopment time 4 minutes.

Satisfactory radiograpins have bean madio of ohinook salmon fry as small as 36 mm (foric length). These fish were reared at $40^{\circ} \mathrm{F}$ for 10 montins and did not increase in longth aftor hatoning, whereas younter 38 mm i'ry in the yolik-sao stage did not give satigfactory raulographos

Oseification appeared to be a function of both gize and age. Fingerlinga wore used for radiographs whon availablec for those fry that did not give a readable radiograph the staining teohnique was also triod. Staining, The techaique used was that of Hollister (1934) for olearing and dyeing of fish for bone study, with the modifications of TRning (1944). Fry preserved in 4 per oent formaldehyde were washed in water, bleached with hydrogon peroxide, washed, plaoed in 2 per oent potassium hydraxide and thon stained with alizarin (alizarin sodium sulphonate). Bleaohing was acoolerated by exposure of the fish in the hydrogen peroxide solution to ultraviolet light. From the stain the fry Were transforred to glyoerin for olearing. Fortebrae and fin rays of the glyoerin-proserved speoimens were oourted with a dissecting miorosoope at a magnifioation of 7 x .

The ossified struotures stained very distinatly, of the two methods the staining method was more of footive for young fry, although all the possibilities for the radiopraphio method, guoh es voltage and amperage changes and types of photographic paper, were not oxplored. Aoourate oounts were easily made of the spocimens of fingerling size prepared by oithor mothod, but the radiographic mothod was proferred bocause the radiographs provided en orderly, pormanent reoord that was available for recheokdng and because the method was faster:

## V. EMVIROBMEATAL CONDITIOAS

The experiment was designed to measure the offoct of one variable, tempersture. Othor factors ware assumod to be oither of no offect or of equal effect in all lots.

Crygon. Anelysis was done by the besio Winkler wethod as outlined by Ellis, Westfall and Ellis (1948).

On flve ocoasions-January 10, January 25, May 26. Ootober 1, and Deoember 29, 1952--axygen detorminations wera inde of the city water in all ten tanise and troughs with samples taken fram the intake, the outlet, the surface and the bottom. In all samples the dissolved axygen was greater than 70 por cent of the saturation lovel and in most cases greater than 90 por oent. There wore no aignifioont differenoes in oxygen values of samples from the intake or the outiot, the surface or tie bottan (Table 6) 。

- जिए Woin wator used in Experiment III mas praotioally devoid of axygen as it ontered the reservoir tank at the Plsheries CoLter, the value for dissolvad axygen in parto per million boing 0.20 or appraximately 2 per cont or saturation. After apilling into the reservoir tank through wire mesh screens, the oxygen inoreased to 3.4 ppme

In the controlled-temperature hatohery the wator was jetted into the tanks and troughs, whitoh further increased the free axygen in the water. Values ranced from 7.4 to 10.9 ppm and the por cent saturation, from 68 to 80. howevar, two lots in the main hatonery were in water of low oxygen content, 3 ppm , on 00 obor 28 . The tap water to the troughs holding these two lots enterad from the bottom without mixing with the
TaBLE 6

| Tank or Trough | 1/10/52 |  | 1/25/52 |  | $\begin{gathered} \text { City Water } \\ 5 / 26 / 52 \end{gathered}$ |  | 10/1/52 |  | 12/29/52 |  | Well Water |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | pprn | 6Sat | Hpa | \%sat | нpa | 75 at |
| 1, inlet <br> cutlet <br> 2, iniet outlet | 1?.39 | 94 |  |  | 12.31 | 89 | 11.28 | 84 |  |  | 10.90 | 3 | 11.20 | 79 |
|  | 23.02 | 99 |  |  | iC. 38 | 83 | 11.39 | 89 |  |  | 8.65 | 68 |  |  |
| $\begin{aligned} & 3 \text {, inlet } \\ & \text { outlet } \\ & 4 \text { inlet } \\ & \text { outlet } \end{aligned}$ | 12.49 | 103 | 1. $4 t$ | 100 | 1. 59 | 37 | 10.15 | 83 | 9.71 | 92 | 8.95 | 77 |  |  |
|  | 12.62 | 16 | 1\%.30 | 99 | 9.31 | 96 | 8.49 | 89 |  |  | 8.30 | 75 |  |  |
| 5, iniet outlet <br> 6 , inlet ut let |  |  | 11.45 | 103 |  |  |  |  |  |  |  |  |  |  |
|  | 12.06 | 106 | 11.37 11.59 | 102 | 16.43 | 92 | 8.4 .4 | 72 |  |  | 8.00 | '75 |  |  |
|  | 11.67 | 110 | 11.04 | lu8 | 16. ${ }^{7}$ | 95 | 8.34 | 83 |  |  | 7.45 | 75 |  |  |
| $\begin{aligned} & 7, \text { inlel } \\ & \text { outlet } \\ & e \text { inlet } \\ & \text { aut let } \end{aligned}$ | 12.42 | 105 | 16.00 | 105 |  |  |  |  |  |  |  |  |  |  |
|  | 16.27 | 103 | 1c. 5 ? | 104 | 9.73 | 98 | 6.58 | 68 |  |  |  |  |  |  |
|  | 12.71 | 102 | $1 . .55$ | 101 |  |  |  |  |  |  |  |  |  |  |
|  | 12.58 | 16. | 12.50 | 100 | 9.1 | 47 | 9.15 | 90 | 12.77 | $\because 1$ | 7.85 | 93 |  |  |
| $\begin{aligned} & 9 \text {, inlet } \\ & \text { outlet } \\ & 10, \text { inct } \\ & \text { cutlet } \end{aligned}$ | 11.29 | 116 |  |  | 9.48 | 103 | 40.5 | 97 |  |  | 7.90 | 84 | 7.75 | 79 |
|  | 11.17 | 115 |  |  | 8.92 | 103 | 9.18 | 90 |  |  | 7.55 | 78 |  |  |
| ti.3, main hatchery |  |  |  |  |  |  |  |  |  |  | 2.95 | 27 | 9.20 | 87 |

air. To correct tinis condition overhead jete wore installed.
Dissolved oxygon levely of 3 ppm or lower are hazardous or lethal to fish in lakes or streams and 5 ppm or more should be present icr favorable conditions (Ellis et al., 1948). Low oxygon levela also influence the development of fish oggs, as Johansen and Mrogh (1914) have shom that levels below 50 per cent saturation delay the development of plaice eggs.

Because the well weter used during the third oxperiment was rich in organio material. the biologioal oxygen demand (BOD) of the water also was determined. Three $250-m l$ amples of well water incubated five days In a hatchery trough at tho woll water temperature of $55^{\circ} \mathrm{F}$ had net oxygen losses of $0.8,0.6$ and 0.7 ppan A rourth samplo treatod in a similar manner, except that the bottle was deliberately loaded with organio material growing on the bottan of the trough, had no free axygen after five days. Although thare was a positive BOD, the deorease in axygen from inlet to outlet was no greater than the moasurement error, 0.2 ppm or less.

Water flow. Water flows were datermined empirioally for each tank and averaged 1.2 gallons per minute with a range of $\frac{1}{3}$ to $1 \frac{1}{2}$ gallons per minute. The flow to the oold mater tanks was limitod by the oapacity of the refrigoration unit but satisfactory oxygen levels were maintained as indicatod above.
pH. The hydrogen ion concentration wes determined with a Beokman Model H2 Glass Electrode pH Meter. Values were in the range of 7.5 to 7.8 exoept on one occasion when the chercoal in the filter aystem was roplaced. This rosulted in a great increase in the pH value of the water,
a great mortality and the conolusion of Experiment II as desoribed on page 14. Aoidity in oxcess of pH 4.1 or alkalinity greator than pH 9.5 are immodiately lethal to brook trout (Cresser, 1930).

Wght. The hatohery roam for the temperatiare exporiments is an inside windowloss rome All lots were exposed equally to the flucrescont lizhts in the room. During incubation and throughout the fry stage the lights were on about two hours a day during the daily routine of taking temperaturas, removing dead oggs and young, otc. In the foeding stage iights were on about 10 hours eaoh day. MoHugh (1954a) has shown some evidenoe that visible light during embryonic development of the grunion. Leuresthes tenuds, influenoes the number of vertebrae. Mean vartebral namber is relatively low in bright light, intormediate in subduad light, and high in darkness, In nature salmon oggs are in darkess, boing buried in the eravel of the stream bottom.

## Eato of Embryologionl Devolopment

General expressions. (a) Hiatorloal. The rate of devolopment of poisilothermio enimals varies directly with temperaturo. An expression of the relationship betweon temperature and rate of development has been sought by many in the hope of olassifying physiologioal prooesses acording to the size of thoir ooeffiologts. It was hoped that the size of the coeffioients mould reveal, by ocmparison, the chemioal or physiaal processes winich are the foundation of the biolo;ionl raactione.

Mathematiaal expressions proposed to desoribe the relatienship of temperature to speed of development may be olassified as ofther theoretical or ampirical. In the first ategory are van't ioff's Q10. Arrieniug' $\psi_{\text {, }}$ and Thompson' $x$ or $Q_{1}$, all of whioh are basioally the same oquation. The three equations are ocmpared in Table 7 and are shown to be of like form after logarithmic transformation.

In the Arrhenius equation temperature is expressed in absoluto units and in reoiprooal form, but Bêlohrádek (1935) pointed out that the reoiprocal of the absolute temperature in practioally a inear function of temperatwe on the centigrade soale between the 11 mits of $0^{\circ}$ and $40^{\circ} \mathrm{C}$. Therefore, the expressions of Arrhenius and van't Hoff are virtually equivalont; both imply that a proportional inorease in speed of development produoed by a given differenoe in temperature is constant throughout the tomperature range at whioh an animal may dovelopo If $\mu$ fits any partioular set of empirical data, $Q_{10}$ should fit equally woll and Vice versa (Andrewarthe and Biroh, 2954); what is true of $Q_{10}$ is also true of $x$ or $Q_{1}$.

Bmpiricul equations that have been used to express the relationship of temperature to apeod of development include the hyperbola, oatenary and logistic. The widely used temperature sumation rule is the equation of an equilatoral hyporbola,

$$
\begin{aligned}
y x & =k \\
\text { or } y(x-a) & =k,
\end{aligned}
$$

whore $y^{1 s}$ tim of dovelopment, $x$ is temporaturo, a is threshold temperature and $\underline{k}$ the tomperature summation constant.

This rule states that the product of time by temporaturo above the threshold is constant regardless of inoubation temperature, and that the rooiprocal ourve, $\frac{1}{y}=k a$, is a straight line. Usually the obsorved reoiproarl values fall on a straight line only in the median portion of the temperature range of development, and of en the temporature-time gurve has an exponential form, the reotprocal ourve being s-ahaped. For this reason Davidson (1944) belleved that the temporature-summation theory is an unsatisfactory representation of the facts and that its use should be disoontinuod.

In 1926 Bêlehrádok proposed the formula

$$
y=\frac{a}{x^{b}} \text { or } y=\frac{k}{x^{b}}
$$

as a better mothod than $h$ or Qlo for desoribing rate of development. The temperature sumation rule is of the same general form but with b $=1$. When it was necessary to introduce blological sero into the formula, the equation besame $y=\frac{k}{(x-a)^{b}} ;$ but since Bôlohrádes measured temperatures in degreos oentigrade and biologiaal zero was practioally $0^{\circ} \mathrm{C}$ for the

[^2]animals studied, "it was not neoessary to complicate the formula by a fifth factor" (Bêlehrádek, 2929).

By logerithmio transformation Bêlehrádek's equation bocames log y $z \log k \rightarrow b \log x$, widch implies that whon the logarithm of time is plotted against the logarithm of temperature the velues ile in a straight line. Bêlohrádek found this to be truo for oonduotion in the solatio nerve of the frog, loocmotion of Paramecium, and mbryological development of the Mediterranean flour moth. Also, values of $\underline{b}$ were found to be more constant than $p$ or Q100

The data used by Bêlehradek for the Mediterranean flour moth wore from a paper by Janisoh, who used the same data to demonstrate that the timentemporature relationship oan best be expressod by a catenary curve,

$$
y=\frac{m}{2}\left(a^{x+a-x}\right)
$$

In this equation $y$ represents the time required for development at the given temperature $x$ in dagrees centigrades II is the time for devolopment at the optimum temperatures a is a constant.

Janisoh (1925) believed that the catenary fitted the observed data throughout the temperature range of devolopment and was later supported in this Fiew by Urarov (1831). However, in a later experiment on the rate of ombryologioal dovelopment of the same moth, Ephestia kuhniella, Voute in 1986 obtained reaults that were oonsiderably different irom those obtained by Janisoh. For points at temperatures above the peak Voute believed thet the oatenary does not fit (Davidson, 1944).

A form of the logistic ourve was foumd by Davidson to be a better It to the flour moth data than either the oatenary or Belohrádek's modifioation of the hyperbola. Davidson observed that often the temperature-
time ourve was of the exponontial form and the reoiprooal was similar to a form of the logistio ourve developed by Pearl and Reed (1920). This formula,

$$
\frac{2}{y}=\frac{L *}{1+\theta^{1}-6 x},
$$

has been suooesafully applied by Davidson to desoribe the relationship between temperature and rate of development at oonstant temperatures for six speoies of inseots. In this formula $1 / y$ is velooity, that is, reoiprocal of the time required to compiote devolopment at a given temperature x $L$, and $b$ are constants. L is the parameter ropresenting the distance between the upper and lower asymptotes of the logistio curve and oan be caloulated from the following formule,

$$
L=\frac{P_{2} P_{2} P_{3}-P_{2}^{2}\left(P_{1}+P_{3}\right)}{P_{1} P_{8}-P_{2}^{2}},
$$

Where $P_{1}, P_{2}$ and $P_{8}$ are values for $1 / y$ on the ourve at three equally epaced temperatures on the absoiasa.

Roplaoing $1 / y$ with $P$, the original equation on be transformed to the equation of a straight line, $\log \frac{L-P}{P}=a-b x$, and the oonstants a and b an be oaloulated by the mothod of "least squares." In essence this equation states that for a given set of data to be expressed by the logistio ourve, a plot of the logarithm of L-P/P and temperature should be points on a straight line.
(b) Fish. The oarly history of the saaroh for a satisfactory law relating temperature to spead of development was oentored around the tomporature sumation rule, although it was mot iaentified as suoh.

* In the original equation Davidson usod tine synvol K , but to avoic confuaion with $k$ in the temperature summation rule, the $X i n$ Davidson's equation wilI be roplacod with $L$.

Rearmer in 1735 suggested that the aums of the dally temperatures were related to the maturation of plantso Bonnet with ohiaks and deCandolle With plants were othera who early reoognised the dependence of developmont upon temperature, but it was century later before quantitative observations of the offeot of temperature upon development of fish oggs wero made (Thcmpson, 1952). Hayes (1949) reviened these early observations as follows:
Davy in 1858 and Coste in 1858 gave ame fragmentary
figures showing that warmod water speeds up the devel-
opment of salmon agga. Probably the firat modern
work was dono in 1859 by Stophon $H$. Aingworth who
oxporimented with eggs of the brook trout, salvelinus
fontinalis, in a littie epring fed fish pond near
West Bloamfild, New York. His table showing the
inoubation period: of egga at various tomperatures
was publishod by Norris in 1868....Seth Oreen (1870)
stated that "trout oggs will hatoh in 50 days at a
mean wator temperature of $50^{\circ} \mathrm{F}$ and for eaoh degree
colder or warmer five days more or less will be re-
quired, the difference, however, inoreasing the far-
ther we reoede fram 50 degrees."

Frallioh in 1901 suggeated a thermal unit systom and Apstein in 1909. a temperature unit called "ragesgrade," day dogrees, both being expressions of the tomperature sumation rule. By Wallioh's definition a tamperature unit meant one degree above $32^{\circ} \mathrm{F}$ for period of 24 hours. For the ohinook aalmon fram the Sacramento River reared at average temperatures of $43^{\circ}$ to $50^{\circ} \mathrm{F}$ the number of thermal units to hatching was constant at about 900 .

The "Tagesgrade" is the produot of temperature in oentigrade units and daye, but diffors fron Wallion's idea of thermal units in that the threshold temperature was reakoned from the lowest point at which development oould take plece, rather than from the freesing point of water,

Reibisoh (1902) calculatod the threshold temperatiae from obsortrtions of Darnevif (1896) upon the influance of tamperature on the development of the oJgs of the plaice and the ood. The data for inoubation temperatures and days to hatching wero canbined in pairs to form oquathons of the type $\left(t_{1}-x\right) H_{1}=\left(t_{2}-x\right) n_{2}$, in wi.1oh $t$ is temperature of 1:oubation, $x$ is threshold temperatire and $n$ is number of days to hatchinf. This equation was solved for $x$ and the average value for all the paired temparatures was cunsidered to be the threshold temperatire for the speoles. For the vialot tha averace was $-2.4^{\circ} \mathrm{C}$ and the range $-1,2^{\circ}$ to $-4.0^{\circ} \mathrm{C}$, for the cod the average was $-3.0^{\circ} \mathrm{C}$ and the rarge $-1.2^{\circ}$ to $-13.2^{\circ} \mathrm{C}$. Using the averace valuas, Reibisch's caloulations were constant and for this reason ne cunoluded that the theory of temparature summation with the proper tomperatira threshold was valid.

Johansen and Krogh (1914) took excestion to the ilea of Reibisch
that a cortain amount of heat or energy from outside of the egg was necessery for development.

When the eggs have the sane temperature as their surroundings, they get no supply of heat fran outside.... The energy whi oh 18 undoubtedly neoessary for the development, is derived in the oase of fish efss, as in all other eggs, fram the ohemioal prooesses involved ir the motabolism of the oges.... The tomparature must be looked upon as a faotor whioh will have a certain influenoe upon the velooity of the chenical reactions and other prooesses involved in the development. The theoretical problem is to obtain a quantitative measurement of this influence and to express it in suoh tarme that a camperison with regular ohemioal reactions becones possible.

Using Dannerig's data, Johansen and Krogh found Qlo also to be unsat. isfactory but believed the temperature-development relationship was inear when temperature and the reoiprooal of time to hatohing were the variables

This means that the ohange in rate of development is proportional to the ohange in temperature, and the equation that expresses this relationship is the temperature summation rule in its reoiprooal form. $\frac{1}{y}=\frac{\pi}{x}$. in which $\underline{y}$ is time, $x$ is tomporature and $k$ is the temperature summation oonstant."

A variation of the reneral form of the Belahrádek formula, $y=\frac{k}{x^{b}}$. was used by Price (1940) to describe the rate of development of the whitofish, Coregonis olupeaformis (Mitohill). For the Lake Erie whitefish spawning begins in late November when dooreasing water temperatures approach $6^{\circ} \mathrm{C}$ and the four month incubation period 18 at temperatures onl: slightly gobve froezing, Price found that the rate of development was di iferent above and below $6^{\circ} \mathrm{C}$ and proposed a two-part equation to descril this condition. lifs equation is of the form

$$
\left.T=\frac{M}{A_{2}}\right\}\left\{\begin{array}{l}
0^{\circ} \\
6^{\circ} \mathrm{C}
\end{array} ; T=\frac{M}{A_{2} t}\right\} \begin{aligned}
& 6^{\circ} \\
& 12^{\circ} \mathrm{C}
\end{aligned}
$$

where $I$ is time of dovelopment and $t$ is temperature. Values of $A_{1}$ averaged 1.13 and of $A_{2}, 1.13$.

For the Salmonidae the history of experinents in whioh there are some data relative to the ratio of devolopment is sumarized in Table 8. These experiments were reviewed for formulae expressing the temperaturedevelopment relationship and if none was given, the ourve of temperature, $x$, and reciprocal of time, $1 / y$, was ploted from the data. This ourve was arbitrarily selected as it was simple to plot and as likely as any to have a linear relationship. The slopes of these curves increase with

[^3] translation to these standard terms will be made where necessary.
TABIE 8

| Investigator | Date | Species | Hange of Temp. | $\begin{aligned} & \text { Temp. } \\ & \text { Fattem } \end{aligned}$ | Source of Data | Pit of the curve $/ / y=x / k$ to the relationanip of temperature to rate of deralopment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ainsworth | 1868 | brook | $37-54^{\circ} \mathrm{P}$ | $x^{-3} x^{2}$ | n* | Poor; for $50^{\circ} \mathrm{P}, 1 / \mathrm{y}$ is high |
| Green | 1870 | trout |  |  |  | No data; incubation period is 50 days at 500p |
| Wallich | 1901 | chinook | $42-51^{\circ} \mathrm{F}$ | X | h | Cood; suggestad tenperature unit syetem |
| Kamajir1 | 1927 | masou | $6-16^{\circ} \mathrm{C}$ | $c^{* * *}$ | - \% ${ }^{(18}$ | Good; high mortalities; non-circulating water |
| Kawajixi | 1928 | rainbow | $7-12^{\circ} \mathrm{C}$ | C, $X$ | - | Pair |
| Gray | 1928 | brown | $3-12_{0}^{0} \mathrm{C}$ | X | h | Poor; for temp. above $5^{\circ} \mathrm{C}, 1 / y$ is hioh |
| Belding, et al. | 1932 | A. Salman | $33-42 \mathrm{~F}$ | $\mathbf{x}$ | b | Very poor; points wisely scattared |
| Embody | 1934 | brown | $2-11^{\circ} \mathrm{C}$ | c, $X$ | $\theta, h$ | Foor; similar to the results of Gray (1928) |
| Embody | 1934 | brook | $2-14{ }^{\circ} \mathrm{C}$ | C, $x$ | - , h | Fair; above $5^{\circ} \mathrm{C}, 1 / y$ values aro high |
| Eniloo dy | t | rainbow | $3-16^{\circ} \mathrm{C}$ | C, $x$ | $e, h$ | Good; |
| Embody | 11 | lake | $2-10^{\circ} \mathrm{C}$ | C, X | $0, h$ | Pair; concave to abscissa |
| Merriman | 1935 | cutthroat | $6-11^{\circ} \mathrm{C}$ | C | - | Cood; only 3 points |
| Rucker | 1937 | sockeye | $8-14^{\circ} \mathrm{C}$ | C | 6 | Good; only 3 points |
| Foster | 1949 | rainbon | $43-53^{\circ} \mathrm{P}$ | $x$ | - | Pair; (x-ray experiment) |
| Donaldson | 1950 | sockeye | $55-32 \mathrm{P}$ | X | 6 | No data; egge moved to $32^{\circ} \mathrm{F}$ at various stages |
| Donaldson | 1955 | chinook | 55-670 | $x$ | c | Pair; egge moved to 530F ram high teraperatures |
| Burrows | 1956 | chinook | $35-60^{\circ} \mathrm{F}$ | c | 6 | Good; includes 10w temperature data |

[^4]
## Sumary of Temperature-Rate of Development Experiments with Salmonidae Eggs

temparature and in general are alightly s-ahaped when the experimental temperatures extend over the entire range of tomporatures at which development is possible. In several experinents the relation of $1 / y$ to $x$ was not linear. Rooicwell (1956) has plotted the rate of development curves for forty-one experiments with fish inoluding the experiments listed in Table 8, oxoept for the experiments of Foster (1949) and Burrows (1956).

In addition to the rate of development experiments listed in Table 8, other temperature experiments with ohinook salmon have been cerried on and inolude the following: Brott (1952) determinod the upper and lower temperature toleranoe for fingerlings of five species of Paoifio salmong johnson and Brice (1953) made observations on the effect of water temperature during incubation on the mortality of ohinook salmon; Donaldson (2955) reported on the survival of the sarly etages of the ohinook salmon after varylng exposures to upper lethal temperatures; $01 s$ on and Foster (1956) dotermined the temperature tol eranoe of ogge and young chinook salmon at temperatures above and below that of the Columbia River; Burrows' 1958 data are not published, but inclide in part observations on mortality and rate of dovelopment of chinook salmon eggs and fry at low temperatures.

Controlled temporature experiments with Pacifio salmon other than the chinook include those of Kawajle1 (1927a), Rucker (1937), Donaldson and Postor (1940, Donaldson (1950) and Rookwoll (1956).

Constant temperature experiments. Other than Wallich's temperature summation system and a provisional velooity of development ourve for Paciflo salmon oggs by Rookwoll (1956), the tamperature and rate of development relationship for ohinook salmon had not been determined. In the
searoh for an equation that would best desoribe this relationship estimates of $\mu, Q_{10}$ and $x$ were made and the fit of the data to the temperature sumation rule, the hyperbola and the logistio was tried.

The incubation temperatures and the number of days to hatohing for Bxperiments I and II are presented In Table 8 and Figure 7o The data used in the searoh for an equation to desoribe the temperature and rate of developent relationship wore seleoted from lots reared at temperatures between $39.8^{\circ}$ and $57.8^{\circ} \mathrm{F}$. Both above and below this range mortality Inoreased markedly (FIg. 20) and the rate of development ourve flattened (Pig. 15). The rapid inorease in mortality is interproted to mean that the inorease in deaths is due to temperatures the flatening of the rate of developmant curve could be interprated to inean that the fast-growing individuals are killed first at high temperatures and the slow-growing individuals aro killed firgt at low temperatures. To avoid tho possibility of the influenoe of letial temperatures upon rate of development the data were limited to thoso lots reared in the temperature range, $39.8^{\circ}$ to $57.8^{\circ}$ F. There were only fowr lots from oach of Experiments I and II that were reared at oonstant temporatures in this range and therefore the data fran the two oxperiments were oambined.

In acmbining the results of Experiments I and II it is assumed that between brooda of different yoara the rate of dovelopment is not statistially signifioant. Differences indioated by the rate of dovelopment trend lines for Exporimants I. II and III in Figure 8 are not great.

The relatively greater deviation of the trand lines at high temperatures (Fig. 8) may be expeoted for two reasons. First, arror in estimation of hatching time was slightly greator when the inoubation period

TABLE 9

Water Temperature, Incubaticn Feriod and Fer Cent Kortality of Green River Chinook Salnon Eggs in Experigents I and II

| Temperature Fattern | Year | Lot | $\mathrm{Temp}_{\mathrm{C}}^{\text {F }}$ | $\underset{{ }^{\circ} \mathrm{C}}{\text { rature }}$ | Days to $50 \%$ hatch | Fer Cent Mortality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Constant | 1951 | 1 | 34.0 | 1.11 | - | 100 |
|  |  | $2 *$ | 39.8 | 4.33 | 128.6 | $\bigcirc$ |
|  |  | 3* | $4 . .7$ | 7.66 | 79.1 | b |
|  |  | 5* | 56.6 | 10.33 | 51.2 | 13 |
|  |  | 6 * |  | 12.8) | 40.0 | ' |
|  |  | 7 | 60.2 | 15.0'7 | 34.0 | 22 |
|  |  | 10 | c2.4 | 16.39 | -1.4 | 78 |
|  |  | 9 | 4.4.0 | 13.11 | <- ј | 99 |
| Constant | 1952 | 1* | 45.2 | 7.33 | 1.24 | 1 |
|  |  | 2 | 3.2 | 10.11 | 5.7 | 2 |
|  |  | $j$ | 44.6 | 12.56 | 3. 8 | 2 |
|  |  | 5* | \%7.0 | 14.33 | 石. 0 | 2 |
|  |  | - | 59.8 | 12.44 | 3 c .1 | 35 |
|  |  | 7 | 02.0 | 10.07 | $\therefore .7$ | 83 |
|  |  | 4 | 54.8 | 13.22 | - | 10 |
|  |  | 14 | 47.1 | 19.4.4 | - | 100 |
| Changine; | 1951 | 4 | 47.4 | \%. 6 | 02.3 | 4 |
| at city |  | 8 A | 40.9 | 8.18 | 46.1 | $j$ |
| water |  | 8 L | 47.0 | 3.33 | c 5.0 | \% |
| temprature |  | 8 C | $4 \% .6$ | 3.44 | 62.5 | 15 |
| Changing; | 1952 | 4 | 58.5 | 14.72 | 32.4 | 5 |
| at city |  | 8 | 59.0 | 15.00 | 32.7 | 2 |
| Hater |  | Sis |  | " | 11 | 3 |
| temperature |  | 8 B | 1 | " | " | 4 |

* jelected for curve fittind because of low mortality


Figure 7. Average Temperature and Number of Days to 50 Per Cent Hatch for All Lots Reared at Constant Temperatures


Figure 8. The Average Temperature and Rate of Development for Eggs of the Chinook Salmon from Green River for Experiments I, II and III
was short (page 27). Secondly, the ordinate of the rate of development ourve is the reoiprooal of the number of days to hatohing, and the graphioal representation of one day for a short incubation period, that is, high temperature, is greator than for one day of a long inoubation per10d. For axample, the difforence in $100 / y$ for $y=29$ and $y$ a 30 is 0.12 ; and for $y=200$ and $y=101$ 1s 0.01 .
(a) Tomporature oooffiodents. Using the eight lots from Table 9 that were selected for low mortality rates and oombining them two at a time, 28 ocmbinations were obtained for whioh $\mu, Q_{10}$ and $x$ were oalculated (Table 10). Onitting the values when the temperature difference is less than $0.3^{\circ} \mathrm{C}$, the range for $\mu$ was 12,000 to 29,500 , for Q10, 2.11 to 6.40 and for $x, 1.08$ to 1.20 , rospootively, olearly indicating that these coeffiolents are not constant for the relationship of temperature to the rate of development for ohinook salmon. The average value for $\mu$ of 20,000 and for Q10 of 3.64 agrees with tho statement by Hayes (1949) that "any Q10 value for salmon and trout oan be convertad to the oorresponding value of Arrheniug' formula with negligible orror (5 per cent) if multiplied by 5500."

Sinoe the values of $\mu$ and $Q_{10}$ are not constant, then the relationship between the logarithm of the speed of dovelopment and temperature is not linoar (page 38). To inveatigato the shape of tho ourvo expressing this relationahip two graphs wero mades for $\mu$ the variables were the reoiprooal of temperature in Kelvin units and the logaritrm of the
*For slight ohanges in temperature the relationship of temperature to time of inoubation is not accurate due to experimental error and occasionally may show a slight inorease in inoubation time with an increase in teaperaturo。

## Temperature Coefficients and Threshold Temperatures for Chinook Salmon from Green River Reared at Conatant Temperatures

| Temp., |  | Temper | ture Coe | ficicients | Threehold | Temperature, $\mathrm{a}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1} 1$ | $x_{2}$ | ${ }^{1} 10$ | $\mathbf{x}^{\text {* }}$ | $u^{*}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| 4.33 | 7.06 | 5.93 | 1.19 | 27700 | 32.0 | 0.00 |
|  | 7.33 | 6.40 | 1.20 | 29500 | 32.6 | 0.33 |
| n | 10.11 | 4.98 | 1.17 | 25400 | 33.0 | 0.56 |
| $n$ | 10.33 | 4.83 | 1.17 | 24700 | 32.9 | 0.50 |
| " | 12.56 | 4.30 | 1.16 | 23200 | 33.4 | 0.78 |
| " | 12.83 | 3.96 | 1.15 | 21800 | 32.9 | 0.50 |
| " | 14.33 | 3.79 | 1.14 | 21300 | 33.3 | 0.72 |
| 7.06 | 7.33 | (13.2) | (1.29) | (49800) | (38.2) | (3.44) |
| n | 10.11 | 4.26 | 1.16 | 23200 | 34.8 | 1.56 |
| * | 10.33 | 4.05 | 1.15 | 22200 | 34.5 | 1.39 |
| " | 12.56 | 3.67 | 1.14 | 20900 | 35.2 | 1.78 |
| 1 | 12.83 | 3.27 | 1.13 | 18900 | 34.1 | 1.17 |
| ' | 14.33 | 3.20 | 1.12 | 18700 | 34.8 | 1.56 |
| 7.33 | 10.11 | 3.79 | 1.14 | 20900 | 33.9 | 1.06 |
| , | 10.33 | 3.61 | 1.14 | 20000 | 33.5 | 0.83 |
| " | 12.56 | 3.42 | 1.13 | 19600 | 34.7 | 1.50 |
| " | 12.83 | 3.03 | 1.12 | 17600 | 33.4 | 0.78 |
| " | 14.33 | 3.02 | 1.12 | 27700 | 34.3 | 1.28 |
| 10.11 | 10.33 | (1.93) | (1.07) | (9200) | (21.4) | (-5.89) |
| " | 12.56 | 3.04 | 1.12 | 18000 | 36.1 | 2.28 |
| ${ }^{\prime}$ | 12.83 | 2.42 | 1.09 | 14200 | 32.2 | 0.11 |
| " | 14.33 | 2.61 | 1.10 | 15500 | 34.9 | 1.61 |
| 10.33 | 12.56 | 3.18 | 1.12 | 19100 | 37.0 | 2.78 |
|  | 12.83 | 2.47 | 1.09 | 14600 | 32.9 | 0.50 |
| " | 14.33 | 2.65 | 1.10 | 15900 | 35.5 | 1.94 |
| 12.56 | 12.83 | $y_{2}$ | 1s no | gative | - | - |
| n | 14.33 | 2.11 | 1.08 | 12000 | 31.9 | -0.06 |
| 12.83 | 14.33 | 2.98 | 1.12 | 18000 | 39.8 | 4.33 |
|  | Average | 3.64 | 1.13 | 20000 | 34.1 | 1.17 |

*See following page
( ) $x_{2}-x_{1}$ less than $0.3^{\circ} \mathrm{C}$; estimates inaccurate in this range

TABLE 10, continued

apeed of development; for $Q_{10}$ the variables wore temporature in contigrade units and the logarithm of the spoed of development. From inspeotion of Figure 9 it would appear that $8.6^{\circ} \mathrm{C}$ in a oritical temperature. Values of $\mu$ and $Q_{10}$ above and bolow this tomperature are as follows:

|  |  |  |
| :--- | :--- | :--- |
| Coeffioient | $\mu$ | $Q_{10}$ |
| $4.0^{\circ}-8.5^{\circ} \mathrm{C}$ | 28600 | 6.32 |
| $8.60-14.0^{\circ} \mathrm{C}$ | 16100 | 2.89 |
| $4.0^{\circ}-1 亡 .0^{\circ} \mathrm{C}$ | 211100 | 8.96 |

The values for $x\left(\begin{array}{c}\text { or } \\ Q_{1}\end{array}\right.$ ) in Table 10 may appoar to be relatively constant, but $x$ is one-tenth the $\log$ of $Q_{10}$ and therefore no better a measure of the rate of developnent than $Q_{10}$. The reason for the more constant value of $\underline{x}$ is that the number is obtained from that part of the $\log$ table in which a large ohange in the logarithm corresponds with a relatively small change in the number. Thampson (1952) lists the $x$ or $Q_{1}$ for a great variety of organisms and points out the constancy of valLues, from 1.08 to 1.20. However, in terms of Q10 the range of values for the same data is 2.2 to 6.2.

In conclusion, a single value for any one of the thermal coeffiolents, $\mu_{0} Q_{10}$ or $x_{0}$ does not adequately describe the rate of development of the ohinook salmon egg.
(b) Threshold temparature. The first step in fitting the ohinook salmon date to either the temperature summation rule or the Bêlehrádek equation was to estimate the threshold temperature, also called "schwelle," blologioal zoro or oritical zero for growth. The threshold temperature is a faotor in both of these equations and often has been disregarded when the incubation temperatures have been measured in oentigrade units.



Figure 9. Relationship of Terperature to the Logarithm of 1000 /Number of Days to Hatchin:. A, Temperature as the Reciprocal of the Absolute Temperature. $B$, Temperature in Degrees Centigrade

The threshold temperature of many animals is near $0^{\circ} \mathrm{C}$ and therefore the oorraotion for this faotor is not groat.

Roibisah estimated the threshold temperature by a mothod already described (page 43): Johancen and Krogh (1914) extrapolated the ratetemperature ourve to the $x$ (temporature) axis and onlled the point of interaeotion the threshold temperature, but acknowledged that "it is not logitimate to assume that the curve of development remains straight beyond that part whioh has aotually been investigated." Krogh (1914), Shelford (1927) and others have reoognized the change in rate of development at high and low temperatures, but an estimate of threshold tamperature other than by extrapolation or by the method of Reibisch has not been proposed. Two other estimates of the threshold temperature oan be derived from the temperature sumation equation, $y(x-a)=k$, whare $y$ is the number of days to hatohing at temperaturo $x$, a is the threshold temperature and $\underline{k}$ is the tamperature sumation constant. In one method the number of tamperature units to hatohing is assumed to be the same for eggs incubated at one temperature as at any other temperature. This can be stated in equation form as follow:

$$
\begin{aligned}
y_{1}\left(x_{1}-a\right) & =k \\
y_{2}\left(x_{2}-a\right) & =k \\
y_{1}\left(x_{1}-a\right) & =y_{2}\left(x_{2}-a\right) \\
\text { fram whion } a & =\frac{x_{1} y_{1}-x_{2} y_{2}}{y_{1}-y_{2}}
\end{aligned}
$$

Reibisoh caloulated the threshold temporature in ossentially the same manner for paired observations and averaged tine values to determine the threshold value for the species. For the ohinook salmon the value
oaloulated in this mannor was $84.1^{\circ} \mathrm{F}$ (Table 10).
The general estimate of the throshold temperature for the speoies, uaing the same data, is the regression oofficiont of $x_{1} y_{1}-x_{2} y_{2}$ on $y_{1}-y_{2}$ whioh was $32.8^{\circ} \mathrm{F}$ for the ohinook asimon reared at oonstant temperatures. The value of the regrosin on ooefficient is a better ostimate of threshold temperatura than the average of the paired observations for two reasons: (1) the better fit to the data as shown in Figure 10, and (2) the analler value for the ooeffloient of variation of $\underline{k}$ when $32.3^{\circ} \mathrm{F}$ rather than $34.1^{\circ} \mathrm{F}$ was used as the threshold temporature. The coeffioient of variation, $C$, in per cont was 3.47 and 4.25 , respeotively,

A second method of estimating threshold temperature involves both
 same symbols, the temperature constant and threshold temperature are derived as follows,

$$
\begin{aligned}
y(x-a) & =k \\
\frac{1}{y} & =\frac{x-a}{k} \\
\frac{1}{y} & \left.=-\frac{a}{x}\right)+\left(\frac{1}{x}\right)(x)
\end{aligned}
$$

This equation is in standard form for the equation of a straight line, $y=a+b x$, and both $\left(\frac{l}{k}\right)$ and $-\left(\frac{a}{k}\right)$ oan bo dotornined. The factor $\frac{1}{k}$ is the regreseion coefficient of the rate of deralopwent, $\frac{1}{\bar{y}}$, on temperatura $x$. By substitution in the standard form the threshold temperature, a, la found as follows:

$$
\begin{aligned}
-\frac{a}{x} & =\left(\frac{I}{y}\right)-\left(\frac{1}{x}\right)(\bar{x}) \\
\frac{a}{x} & =\frac{\bar{x}}{x}-\left(\frac{I}{y}\right)
\end{aligned}
$$

a

$$
a=\bar{x}-\operatorname{k}\left(\frac{I}{y}\right)
$$

By this method the threshold temperature for the chinook salmon was found to be $33.8^{\circ} \mathrm{F}$. The inoarity of the relationship of the rate of development to temperature is shown by the oloseness of the points to the regresaion line in Figure 10.

There is a good fat of the data to both of these two new methods of estimating the threshold temperaturo. The latter method is preferred because the regression llne is not required to pess through the origin ard the variables $\bar{x}$ and $\frac{I}{y}$ and the oonstant $k$ are more easily determined.

The vonfidenoe limits for the throsinold temperature derived by the second method can be detamined $\mathrm{l}_{\mathrm{y}}$ solving the following oquation for a:

$$
\left[\left(-\frac{a}{k}\right)+\left(\frac{1}{k}\right) a\right]^{2}=t_{n-2}^{2} s_{\frac{1}{y}} x\left[\frac{1}{n}+\frac{(a-x)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}\right]
$$

$$
\begin{aligned}
\text { estimate of } \frac{1}{x} & =\frac{1}{x} \text { as defined above } \\
\text { estimate of } \frac{\alpha}{x} & =\frac{a}{x} \text { as dofined above } \\
t_{n-2} & =5 \text { per oent point of student's } t \text { for } \frac{n-2}{} \text { items } \\
s_{1} \cdot x & =\text { standard deviation from refression of the rate } \\
\frac{y}{y} & \text { of development on temperature } \\
\bar{x} & =\text { mean of temperaturs observations } \\
n & =\text { number of observations }
\end{aligned}
$$

The oonfidence intarval for the threshold temperature is defined by the values of the two roots of the equation, and for the chinook salmon data these values were oqloulated to be $38.0^{\circ}$ to $34.5^{\circ} \mathrm{F}$.
*Equation derived by D. G. Chapman, Mathematios Department, University of reashington.

In oonclusion, the threshold temperature for Green River chinook ealmon reared at oonstant tamporatures in the range of $39.8^{\circ}$ to $57.8^{\circ} \mathrm{F}$ is about $33.8^{\circ}$ F; values of three different estimates were $32.8^{\circ}, 33.8^{\circ}$ and $84.1^{\circ} \mathrm{F}$. The 95 por oent oonfidenos interval was $33.0^{\circ}$ to $34.60^{\circ}$ for the threahold temperature of $33.8^{\circ} \mathrm{F}$ 。
(a) Temporature sumnation rule. The threshold temperature hoving been estimated, the prooess of ourro fitting was resumed. The linearity of the rogression of $x_{1} y_{2}-x_{2} y_{2}$ on $y_{1}-y_{2}$ and of $1 / y$ on $x$ in Figure 10 shows that the temperature summation rule is a good expression of the rolationship between the rate of dovelopment and temperature for incubetion of ohinook selmon eggs from Green River in the tomperature range of $39.8^{\circ}$ to $57.8^{\circ}$ F.
(d) Bolohrádok equation. The fit of the ohinook salmon data to the Bolehrádek equation and to the logistio was also tried. The Belehradek equation by logarithoic tranaformation beocmes the standard form of the equation of a straight lina:

$$
\begin{aligned}
y & =\frac{k}{x^{0}} \\
\log y & =\log k-b(\log x)
\end{aligned}
$$

The value of b, whioh is called a themic ocefficient, is the regression 000 fficient of $\log y$ on $\log x$. For the chinook salmon $b$ was -0.968 when correoted for threshold temperature of $83.8^{\circ} \mathrm{F}$ and -1.12 for the unoorrected data (F1g. 11). The value of b for the embryonio development of Salno fario as oaloulated by BÂlehrádel (1929) was 0.99; for onoorhynchus norka as onlculated by Rucker (1937), 1.06.

In oonolusion, since the temperature sumetion rule and the Belehradak equation are identical when $b=1$ (the ohinook data show the value


of to be approximately 1 ), then the relationship of either (1) the speed of development to the temperature or (2) the logarithm of the number of days to hatching, to the logarithm of the temperature is linear for lota reared at oonstant temparature in the range fron $89.8^{\circ}$ to $67.8^{0} 9$. (0) Logistio ourvo. The logistic ourvo used by Davidson (1944) was of the form

$$
\frac{1}{y} \cdot \frac{L}{1+0^{a-b x}}
$$

Replaoing $1 / y$ with $p$ the equation is developed as followsi

$$
\begin{aligned}
P & =\frac{L}{1+e^{a-b x}} \\
L & =P+P\left(e^{a-b x}\right) \\
\frac{L-P}{P} & =e^{a-b x} \\
\log _{e} \frac{L-P}{P} & =a-b x
\end{aligned}
$$

The last form is again a form of the equation of a straight line for wich a and $\underline{b}$ can bo determined by standard mothods. L can be estimated as described on page 42. The relationsinp of $\log \frac{L-P}{P}$ to $x$ should be linoar if the logiatic equation desoribes the temperature development relationship; for the ohinook salmon it appers to be 30 (Fig. 11). The Fiues for the oonstanta wore 3.96 for $L, 2.46$ for a, and 0.242 for $b$, the equation for the ourve being

$$
\frac{100}{y}=\frac{3.96}{1+0^{2.46-0.242 x}}
$$

In Flgure 12 tho logistis curve olosely fits the points that are determined by the relationship of temperature to the number of days to hatchings and the reoiprooal of the logistlo ourve fits equally well to the points that are determined by the relationshlp of temperature to the


Figure 12. The Relationship of Temperature and the Number of Days to Hatchinf, to the Iogistic Curve and Its Reciprocal for Bight Lots of Experiments I and II
apeed of development (the reciproosl of the number of days to hatching). The relationghip of temperature to speed of development was shown to be linear in Figure 10 and to fit the $\operatorname{logistio}$ in Figure 12 , but this is explained by the fact that the temperature range of the lots seleoted for curve fitting lies in the region of the point of inflootion of the logistio ourve, a region where the logistic curve is nearly a straight 1inc.

The apperent good fit of the logistio ourve to the points in Figure 12 does not necessarily mean that the logistio expresses the theoretical relationship between tomperature and rate of development. For three ourves in whioh the deviations of the points from the ourves were less than anown here for the ohinook salmon, Browning (1952) tested the goodness of fit by the $X^{2}$ test and found that the probability of the calculated ourve desoribing the relationship of tamperature to the rate of development was less than 0.0001.

In conclusion, for the temperature range of $39.8^{\circ}$ to $57.8^{\circ} \mathrm{F}$ the data If the logistic curve, but the ift is no better than either the temperature sumation rule or the Bêlehrádek equation.

Altered temporature oxperimont: Experiment III differed fram I and II in that oggs from four raoes* wore used and the temperature pattern was ohanging rathor than conetant. The temperature history for each lot identified by the smme symbol was similar, that is, the tomperature history of the eggs of Slogit Lot 1 . Entiat Lot 1 , Greon Lot 1 and Sacramento Lot 1 was similar. Weter temperature, incubetion period and per

Tho ohinook salmon from the Skagit. Entiat, Green and Sacramento Rivera are considered to be separate raoes.
cont hatoh are given in Table ll.
(a) Inoubation rate. The rate of development of the Seoramento egge was fastest, with Groon, Slogit and Entiat eggs following in the order given. No determino the rate of devolopment for enoh race relative to the race from the saormmento Rirer, the number of days to hatohing for each race was difided by the oorresponding value for the Sacramento River race. This was done for each temperature lot by raoes and then the average values for the four races were determined. For the oggs from the salmon of the Baoramonto, Green, Skagit and Entiat Rivers these values were 100, 97.2, 94.3 and 92.4 , respeotivoly. Aotually, the average temperatures for similer temperature lots varied silghtly between races and, Por ocmparative purposes, the number of days to 60 per cont hatoh was adjusted to a comon tamperature by linear interpolation (Table 12). Evidence of differenoes in inoubation rates of the four raoes was obtained from three sources: (1) inspection of Figure 13, whioh shows the number of days to hatohing for each race at oaoh temperature, (2) test of the signifioance of the differenoe in the number of days to hatohing by student's $t$, and (3) the oonaistont ranking of the raoes in regard to the number of days to hatohing at various temperatures as shown in Plgura 14.

The relationahip of the nuber of days after the start of the experiment to the oumiative peroentege hatohed is presented in Pigure 13 and shows that the Sacamento egg lots ocmpleted hatohing bafore the Entiat egg lots began axoept in Lot 2. Lot 2 eggs wore hatchod at temperatures of $34^{\circ}$ to $36^{\circ} \mathrm{F}$ and oonsequently tho hatohing pariod was extended. The 5-95 percentile deviation, $\frac{P_{95}-P_{5}}{2}$, of the days to 50 per cent hatoh

Water Temperature, Incubation feriod and Fer Cent Lortil ity of the Chinook Salwon Efgs of Experinent III

| Stock | Lot | Teinj., ${ }^{\text {O }}$ |  |  |  | $\begin{gathered} \text { Nc. of } \\ \text { Days } \end{gathered}$ | $\begin{aligned} & \hline \text { Ier Cent } \\ & \text { Yortality } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Start | Low | End | Ave. |  |  |
| Skagit River | 2 | 45 | 34 | 45 | 38.8 | 130.0 | 4 |
|  | 2 | 50 | 34 | 36 | 39.8 | 112.0 | ) |
|  | 3 | 55 | 44 | 44 | 49.4 | 50.0 | 2 |
|  | 4 | 60 | 51 | 51 | 55.9 | 38.7 | 2 |
|  | 5 | 65 | 59 | 59 | 61.3 | 31.3 | 40 |
|  | 6* | 55 | 54 | 55 | 54.7 | 46.7 | 8 |
| Entiat River | 1 | 45 | 34 | 46 | 33.8 | 133.0 | 6 |
|  | 2 | 50 | 34 | 3 t | 40.6 | 162.0 | 2 |
|  | 3 | 55 | 42 | 42 | 48.4 | 62,2 | 2 |
|  | 4 | 60 | 51 | 51 | 55.2 | 42.3 | 2 |
|  | 5 | 65 | 58 | 58 | 61.3 | 33.5 | 11 |
|  | 6* | 55 | 54 | 55 | 55.2 | 40.4 | 9 |
| Green <br> river | 1 | 45 | 34 | 44 | 39.0 | 125.0 | 42 |
|  | 2 | 50 | 34 | 36 | 41.6 | 97.6 | 36 |
|  | 3 | 55 | 45 | 45 | 50.2 | 51.3 | 63 |
|  | 4 | 60 | 52 | 52 | 56.3 | 30.1 | 03 |
|  | 5 | 65 | 63 | 03 | 64.0 | -- | 100 |
|  | 6 | 56 | 54 | 54 | 55.4 | 39.7 | 52 |
| Sacramento River | 1 | 45 | 34 | 43 | 39.0 | 124.0 | 2 |
|  | 2 | 50 | 34 | 36 | 41.0 | 97.4 | 2 |
|  | 3 | 55 | 4. | 44 | 50.5 | 40.6 | 1 |
|  | 4 | 60 | 53 | 53 | 56.5 | 35.5 | 1 |
|  | 5 | 65 | 60 | 60 | 02.2 | $<8.4$ | 24 |
|  | 6 | 50 | 54 | 54 | 55.5 | 38.0 | 3 |

[^5]Observed and Adjusted Temperatures and Days to 50 Pur Cent Hatch for Uhinook Salmun Eggs Reared at Cnanging lemperatures, Experiment III

| Lot | Stock | Observed |  | Adjusted |  | 5-95 Fercentile Deviation to 50 Hatch | Hatching Rate Relative to Sacramento |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ave. | Days | Ave. | Days |  |  |
|  |  | Temp. | to 50\% | Temp. | to $50 \%$ |  |  |
|  |  | , OP | Hatch | , ${ }^{\circ} \mathrm{F}$ | Hatch |  |  |
| 1 | Sacramento | 39.0 | 124.0 | 39.0 | 124.0 | 2.27 | 100. |
|  | Green | 39.0 | 125.0 | " | 125.6 | 4.31 | 99.2 |
|  | Skagit | 38.8 | 132.0 | 11 | 128.0 | 1.85 | 96.9 |
|  | Entiat | j8.8 | 133.0 | " | 130.6 | 2.12 | 95.4 |
| 2 | Sacramento | 47.6 | 97.4 | 41.6 | 97.4 | 11.00 | 100. |
|  | Green | 41.6 | 97.6 | \% | 97.5 | 1C.U8 | 99.3 |
|  | Skagit | 39.8 | 112.0 | 11 | 101.4 | 5.12 | 96.1 |
|  | Entiat | 40.6 | 102.0 | " | 96. 2 | $\because .12$ | 101. |
| 3 | Sucruine nto | 50.5 | 48.6 | 50.5 | 48.6 | 2.75 | 160. |
|  | Green | 50.2 | 51.8 | 11 | 51.2 | $\ldots .98$ | 44.9 |
|  | Skagit | 49.4 | 50.0 | 11 | 53.2 | 2.10 | yl. 4 |
|  | cintiat | 48.4 | 62.2 | 1 | 56.0 | <. 12 | 86.8 |
| 4 | Sacramento | 56.5 | 35.5 | 55.2 | 38.2 | 0.50 | 160. |
|  | Green | 56.3 | 38.1 | " | 40.3 | 1.16 | 94.8 |
|  | SKagit | 55.9 | 38.7 | " | 40.5 | 2.74 | 94.3 |
|  | Entiat | 55.2 | 42.3 | " | 42.3 | 1.23 | 90.3 |
| 5 | Sacramento | 62.2 | 28.4 | 01.3 | 29.6 | 1.60 | 100. |
|  | Green | - | - | - | - |  |  |
|  | Skagit | 01.3 | 31.9 | " | 31.9 | 2.66 | 92.8 |
|  | Entiat | 61.3 | 33.5 | " | 33.5 | 2.83 | 88.4 |
| 5* | Sacramento | 55.5 | 38.0 |  |  |  |  |
|  | Green | 55.4 | 39.7 |  |  |  |  |
|  | Skagit* | 54.7 | $4 \% .7$ |  |  |  |  |
|  | Entiat** | 55.2 | 46.4 |  |  |  |  |

* "Controls", temperature range $56-53^{\circ} \mathrm{F}$
** Incubated in water of low oxygen content


Figure 13. The Average Temperature and Rate of Development for the Eggs from Four Races of Chinook Salmon in Experiment III



(Jable 12) is three to four times greater for Lot 2 than for any of the other lots, and for this reason the 50 por cont hatohing date is a less feilable estimate of hatohing for lot 2 than for lote with a shorter hatohing period.

The differenoe in the number of days to hatohing for each race and oah lot was tostod for aignifioanoe by student's $t$. Por Lots $1,3,4$ and 5 (see Table 5 for lot temperatures) the probability of the $t$ values was less than. Ol, that is, the differences in mean hatohing times botweon races at the aame temperature wore highly significant. The nonnormal dietribution of the number of dave to hatohing makes use of the $t$ test questionable and prohibita its use for lot 2 data.

When the four races are arranged in the order of tho number of days to hatohing, the order remains the same at average temperatures of $39.0^{\circ}$, 50.50, 55. $2^{\circ}$ and 61. $3^{\circ}$ F. Lot 2 data were not inoluded for reasons given above. The order, beginning with the race with the shortest time to hatohing, is Smoramento, Greon, Slagit and Entiat. These deta are plottod in Figure 18. The probability of these palues randomly aligning in this order is $\left(\frac{1}{4!}\right)\left(\frac{1}{4!}\right)\left(\frac{1}{8!}\right)$, or one ohanoe in 3456.

For the conditions of Experiment III, the differenoes in the rate of developent between races ers efident from Figures 13 and 14 even though aome of the diffarenoes are not great. With larger samples from oach race, that is, mora opawning pairs, rosults different from those obtained here would be possible if it so happened that the salmon in these experiments wore atypical representatives of their raoe.

In oonclusion, the inoubation rate of the Saoramonto eggs in these axperiments was about 8 por oont fastor than tho Entiat ogges this
differonce 15 aignifiount. The rate of development of the Green and Skagit eggs was intermodiate to the Saoramento and Entiat oggs.
(b) Threshold temperature The threshold temperature and oonfidence limits were calculated for the four raoes by the methods given on page 60 and are tabulated in Table 13. Although the same ordar for the races that prevailed for the rates of developnent is present for the threshold temperatures and confidence interval, the oonfidenoe intervals overlap widely and limit tre signifionnoe that may bo attaohed to the ordering offeot.

The range of threahold temporatioes, $31.1^{\circ}$ to $32.8^{\circ} \mathrm{F}$, for lots reared at changing temperatures is lass than the value of $33.8^{\circ} \mathrm{F}$ for the threshold temperature of lots reared at oonstant temperatures in the range from $39.8^{\circ}$ to $57.8^{\circ} \mathrm{F}$. To investigate further the differenoe in threshold temperatures between lots reared at oonstant temperatures and at ohanging temperatures. the threshold temperature and confidence inter~ Fal ware oaloulated for lots reared at oonstant tomperatures at all tamperature levels. In Table 13 the results of these oqlculations show that the threshold temperatures of the lote roared at constant temperatures are higher and 11 e outside the range of lots reared at ohanging temperatures, but sinoe the confidence intervals overlap, the differenoes may not be signifioant.

In conolusion, the threahold temperatures of the four stooks reared at oharging temperatures range fram $31.1^{\circ}$ to $32.6^{\circ} \mathrm{F}$. The range of ocmperable values for egge fran the Green River stook at oonstant temperatures is higher, $82.7^{\circ}$ to $34.0^{\circ} \mathrm{F}$, but the oonfidonoe intorvals for the two groups overlap.

Estimated Threahold Temperatures and Confidence Limits for Experimenta I, II and III

| $\begin{aligned} & \text { Bxpori- } \\ & \text { gant } \\ & \hline \end{aligned}$ | Rnae | Sotimatod Threshold Temperature* | Confidanoe Limits |
| :---: | :---: | :---: | :---: |
| III | Sacramento | $32.6{ }^{\circ} \mathrm{F}$ | 31.2-33.9 ${ }^{\circ} \mathrm{F}$ |
| " | Green | $31.7{ }^{\circ} \mathrm{F}$ | $29.8-33.3{ }^{\circ} \mathrm{F}$ |
| " | Skagit | $31.6{ }^{\circ} \mathrm{F}$ | 29.8-33. $2^{\circ} \mathrm{F}$ |
| * | Entiat | $31.1{ }^{\circ} \mathrm{F}$ | 28.9-33.0 $0^{\circ} \mathrm{F}$ |
| I \& II | $\begin{aligned} & \text { Green, } \\ & \text { Temp. }, 40-58^{\circ} \mathrm{F} \end{aligned}$ | $33.8{ }^{\circ} \mathrm{F}$ | $33.0-34.6{ }^{\circ} \mathrm{F}$ |
| I | Green, All temps | $32.7{ }^{\circ} \mathrm{F}$ | 30.4-34. $5^{\circ} \mathrm{F}$ |
| II | Green, All tomas | $34.0^{\circ} \mathrm{F}$ | $31.8-35.8^{\circ} \mathrm{F}$ |

*Threshold temperature $=\bar{x}-k\left(\frac{\overline{1}}{\bar{y}}\right)$ where $\frac{1}{k}$ is the regression coefficient of the rate of development on temperature.
(0) Temperature sumation oonstant, k. Having determined the threshold temporature, a, the tomperature sumation oonstant, $k$, was estimated. Two entimates were mades one in whioh the throshold temperatures were the caloulated vilues as dotermined in Table 13 , and a seoond in whioh the threchold tenperature was arbitrarily taken as $32^{\circ} \mathrm{F}$.

The values of the temperature constant are given in Table 14. When tio oaloulated values of the threshold tomperature are used it is seen that the $k$ vilues very more between races but have a maller standard orror than whon the throahold tomperature of $32^{\circ} \mathrm{F}$ is used. For eggs fran the Greon River stool the average value of the tomperature summation oonstant, when $32^{\circ} \mathrm{F}$ is the threshold temperature. is 932 , whioh is equiFalent to 982 temperature units as defined by Wallioh (page 43). This is similar to his estimate of 800 temperature units to hatohing for sacramento River ohinook aalmon espeoially if allowanoe is made for the more sapid rate of development of the saoramento fish (page 72).

In conolusion, the best estimate of the temperature sumation conotant, $x$, is made when the threshold temperature is caloulated from the equation, $a \bar{x}-k\left(\frac{I}{y}\right)$, where $1 / k$ is the regreasion ooeffioiont of the rate of developmont on temperature. However, if a is unknown, $32^{\circ} \mathrm{F}$ is a reasonable eatimate of a. Jsing the oloulated estimates of a, the values of the temperature summation constant up to the time of hatohing for the gg: of Experimont III from the Saoramento, Green, Sicagit and Bntiat River ohinook anm wore 860, 940, 960 and 1020, reapectively.
(d) Inoubation time of Exporiment I aublots. Experiment I was baslaally constant temparature expariment. Howevor, thore wore five sublots of 100 eggs each in whioh the egge wore moved during the inoubation

TABLE 14

Temperature Sumation Constant, $k$

$$
(y)(x-a)=k
$$

| Experiment | Stoc k | No. of Lots | Kange Áve. Tomp. ${ }^{\circ} \mathrm{F}$ | ** | k-8.e. | \& | k-8.e. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | Green | 11 | 40-65 | 32.7 | 919-5.8 | 32 | 960_9.1 |
| II | " | 10 | 45-62 | 34.0 | 815-5.7 | " | 89710.3 |
| $I \& I I$ | " | 8 | 40-58 | 33.8 | 828-10.2 | 18 | 939-17.7 |
| III | n | 5 | 39-56 | 31.7 | 944-9.4 | " | 922-12.1 |
| " | Sacramento | 6 | 39-62 | 32.6 | 855-15.4 | 1 | 887-14.1 |
| $\pi$ | Skagit | 5 | 39-61 | 31.6 | 951-12.9 | \# | 921-17.0 |
| 11 | Entiat | 5 | 39-61 | 31.1 | 1020-17.1 | " | 953-26.7 |


| Average for Green River | $877-3.97$ | $930-0.64$ |
| :--- | :--- | :--- |
| Average for Experiment III | $94-6.11$ | $921-8.01$ |

[^6]porlod from medium to high water temperatures and threo sublots in whiol the move was from modium to low water temperatures (see Table 15). Although the oggs wore tranaferred for the purpose of observing the offec upon moristic oharacters and upon the relation of relative change in temperature to per cent mortality, the results also show an effeot upon the rate of development.

The rata of development at the average temperature of incubation Fas slower for the sublots moved to the high temperatures than for lots reared at the corrosponding constant temperature. For sublots moved to the $l$ ow temperatures there were no lots reared at the corresponding con. etent temperature $\mathcal{I}$ or ocmparison, but the rate of development of the sublots was as fast or possibly faster than axpooted from the projeotiol of the rate of development ourve (Fig. 15).

All experiments ocmbined. An adequate expression of the rate of devolopment for lots reared at constant temperatures in the optimum ran and for lots of the four stocks rearod at ohanging temperatures has beel found. In an effost to find a general empirioal equation to fit all thi data, even though several oamplexities may have been introduced by ocmbining lots-irrespeotive of race, temperature pattern, year or mortal-ity-othe temperature sumation rule, the Belehradok equation, and the logistio ourve were fitted to the tamperature-development relationship for fifty lots fram the three oxperiments. This inoluded all lote exce] the two that were incubated in water of low oxygen oontent. The values for average temperatures and the numbor of days to hatohing for these lote are to be found in Tables 9. 11 and 15.

The fit of the temperature sumation rule in the reoiprooal form to these data was tried by plotting the rolationship of the average

Water Temperature, Incubation Period and Fer Cent Hatch of Experiment I Sublots

| Lot | Temperature History | $\stackrel{\substack{\text { Temp. } \\ \mathrm{om}}}{ }$ | $\begin{aligned} & \text { Days to } \\ & 50 \% \text { Hatch } \end{aligned}$ | $\begin{aligned} & \hline \text { Per Cent } \\ & \text { Mor tal ity } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 8 C 9 | At city water temperature 55 to $48^{\circ} \mathrm{F}$, for 25 day 8 then to constant water ternperature of $65^{\circ} \mathrm{F}$ | 55.9 | 40.3 | 93 |
| 8010 | Same as $8 C 9$ except to $62_{2}^{1}{ }^{\circ} \mathrm{F}$ water | 55.7 | 43.4 | 28 |
| 807 | Sane as 8C9 except to $60^{\circ} \mathrm{F}$ water | 54.8 | 43.3 | 42 |
| $3 A^{7}$ | 28 days at $45^{\circ} \mathrm{F}$, then to $60^{\circ} \mathrm{F}$ | 51.2 | 50.3 | 3 |
| 2 A 7 | 23 days at $40^{\circ} \mathrm{F}$, then to $60^{\circ} \mathrm{F}$ | 49.8 | 57.8 | 36 |
| 801 | 25 days at city water tenperature, then to $34^{\circ} \mathrm{F}$ | 37.1 | 144.0 | 3 |
| 8 Ba 2 | 18 days at city water temperature, then to $34^{\circ} \mathrm{F}$ | 36.5 | 158.0 | 23 |
| 8 Bal | 1. uays at city water temperature, then to $34^{\circ} \mathrm{F}$ | 36.1 | 172.0 | 42 |



Flgure 15. Rate of Development and Temperature for All Lots, All Experiments
temperature to the reoiprocal of the number of days to hatching (Fig. 15). The relationship was not linear and therefore a ourve that fitted the data more olosely was sought.

The fit of the Balehradek equation to these data was tested by plotting the relationship of the logarithm of the avarage temperature to the logarithm of the number of days to hatohing ( $F 1 g, 16 A$ ). This relationship also deviated fram linearity.
(a) Logistio ourve. For the logistio ourve the fit to these data was tested by plotting the relationship of temporature to the logarithm of $L-P / P$ (page 42). As a triei run, the relationahip of temperature to the $\log$ of L-P/P were plotted for olght lots that wero approximately equally spaced throughout the temperature range at which ohinook salmon eggs develop (Fig. 16B). Since this rolationship was practioally linear. the logistio ourve was thon fittod to the data for all lots fram Experiments I, II and III (Fig. 17).

The oonstants for the lagistic ourve wore determined by the methods desoribed on pages 42 and 63. For L, ralues of $P$ at $3^{\circ}, 9^{\circ}$ and $15^{\circ} \mathrm{C}$ were used. The calculated equation for the number of days to 50 per oont hatch is

$$
y=\frac{1+02.306-.2022 x}{.04404}
$$

For this equation the standard orror of estimate, $s y \cdot x$. which is an estimate of the fit of the calculated curve to the observed data, is 3.14. The reoiprocal of $y$, times 100, is the per oent development per day for whioh the equation is

$$
\frac{100}{y}=\frac{4.404}{1+0^{2} .306-.2022 x}
$$





Figure 16. Relationship of the Rélehradek Equation and the Logistic Equation to the Rate of Development Data from all Lots. A, Rolationship of the Lagarithem of Temperature to the Logarithon of the Number of Days to Hatchinc. B, Relationship of Temperature to the Logarithm of L-P/P.


Figure 17. The Relaticonship of Tenperature and the Number of Days to Hatehng to the Logistic Carve and Its Reciprocal, for All Lots

In oonclusion, when data from all lots in the three experinemts are used, the oquation of the logiatio ourve in the form

$$
y=\frac{1+\theta^{2} .306-.2022 x}{.0 \$ 404}
$$

where $y$ is the number of days to hatahing at temperature $I$, best describes the temperaturondevelopmont relationship. The standard orror of estimate for this ourve is 3.14.
(b) Duration of hatohing period. The duration of the hatohing perLod was moasured by the number of days between the hatohing of the fifth percentile ogg and the ninety-fifth percentile egg and was anled the 5 to 95 percentile range for the hatohlng poriod of ohinook salmon. By not using the first and last five por cont of the total ranpe, the few very early or late hatahinf: eggs that oocesionally would ooour were not inoluded. The relationship of the tomperatura at time of hatohing to the 5 to 95 peroentils range for the hatohing poriod is shown in Figure 18 .

The duration of the hatching period might be oxpocted to be influenced by the rate of development and thus to deoline with increase in temperature, but this was not exaotly true as shown in Figure 18. From $35^{\circ}$ to $40^{\circ} \mathrm{F}$ the duration of the hatohing period rapidiy deolined, but above $40^{\circ}$ the length of the hatohing period was short and without notioeale change with respeot to temperature. The range of average temperatures for which the mortality of oggs and fry of the chinook salmon is a minimun, is also the range for whioh the duration of the hatohing period 1. minimum. It would appear that a short hatohing period is associated with a high survival.


Figure 18. The 5 to 95 Percentile Range for the Hatching Period of Chinook Salmon

## Mortalitios

Lots reared at constant temperatures. The wookly oumulative mortalities of the lots reared at constant temperatures in Experiments I and II are shown in Figure 19. For lots reared at corresponding tamperatures In both experiments- $-60^{\circ}, 55^{\circ}, 50^{\circ}, 45^{\circ} \%$-the graphs up to the tenth week (the end of Experiment II) are avarages of the two experiments. By inspeation of Figure 18 the lots an be olessified into four groups as Collows

1. Lots in whioh martality during inoubation is 100 par oont, that 1s. no hatoh. Th1s inoludes the lots reared at average temperatures of $34^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ and higher.
2. Lots in whioh a fow survive to hatohing but die in the yolk-sac stage. In this astegory are the $62.5^{\circ}$ and $60^{\circ} \mathrm{F}$ lots.
3. Lots in which the mortality to hatching is low but is followed by a high mortality during absorption of the yolk sac. After feoding has bogun, mortality is again low. The $57.5^{\circ}$ and $55^{\circ} \mathrm{F}$ lots are in this group.
4. Lots such as $50^{\circ}, 45^{\circ}$ and $40^{\circ} \mathrm{F}$, in whichmortality is low during inoubation, yolk-s80 and fingeriing stages. This is the optimum tamperature range in respeot to mortality for ohinook salmon reared at oonstant temperatures.

One explanation of the high mortality that oocurred during the ynlksac stage to the lots reared at $57.5^{\circ}$ and $55^{\circ}$ Fis that the organization of the physiolorical prooesses is out of stop. Hayes (1949) wrote that physiological processes have optimun temperatures whioh vary with the process. For example, bile formation is favored at high temperatures

and ofrculation in the yolk at low temperatures. Thus, exposure of the ogg to an unfarorable temperature may not result in death until the yolksac stage.

The relationship of temparature to per cont mortality at time of hatahing is shown in Figuro 20. To supplemont these obsorvations, especLally at low temperaturos, Burrows data for sinilar experiments with ohinook salmon at the Entlat Hatohery are included (Table 16). The rapid inorease in mortality at temperatures of $60^{\circ} \mathrm{F}$ and higher and at temperatures lower than $40^{\circ} \mathrm{F}$ are to be noted.

From Figure 20 an approximation of the "lothal temperature 50 per oont. $\mathrm{Lf}_{50}$," was made. This is the temperature at whioh 50 per oent of the individuals die from temperature effeots. Taking into socount the mortality not due to temperature, which was assumed to be the average mortality in the optimum range (4.6\%). the $L T_{50}$ was the temperature at the 65\% mortality level. The ourve of mortality in Figure 20 crossed the $55 \%$ level at tro places, $36.5^{\circ} \mathrm{F}$ and $60.8^{\circ} \mathrm{F}$, whioh are the estimates of $\mathrm{Lr}_{50}$

Changing temperatures. The egg mortalities for the Sacramento, Groon, Skagit and Entiat races are listed in Tablo 11. From inspection of the table several faots are ovident.

First, the high mortality of the lots fram the Green River stook was not due ontirely to temporature. In Lot 5 the egg mortality was 100 por oont; for the five other lots, the mortality was at least ten times as great as the avorage mortality for the other three racess therefore it is evident that some of the mortalities to the Green River lots were from causes other than temperature. Also, at an avorage temperature of


## Pigure 20. Temperatare and Per Cent Mortality for Lots Reared at Constant Tewperature

TABLE 16

Mater Tempercture, Incubation Period and Hortelity o: Cninook salnon Eg Reared at Constant lemperatures at the Entiat Hatchary (Eurrows' Data)

| Year | Brood stock | Temp. ${ }^{\circ} \mathrm{F}$ | Days to $50 \%$ Hatch | Fer Cent slortality |
| :---: | :---: | :---: | :---: | :---: |
| 1952-53 | Entiat | 49.78 | 52.19 | 7.1 |
|  |  | 54.38 | 41.88 | 5.7 |
|  |  | 57.53 | 36.64 | 6.1 |
|  |  | 59.61 | 34.34 | 12.4 |
| 1953-54 | Entiat | 35.10 | 204.00 | 99.6 |
|  |  | 37.35 | 157.54 | 52.6 |
|  |  | 40.05 | 120.11 | 18.5 |
|  |  | 42.64 | 92.38 | 6.1 |
|  |  | 44.89 | 76.82 | 18.4 |
| 1953-54 | Skayit |  |  | 98.7 |
|  |  | 37.29 | 160.29 | 30.9 |
|  |  | 40.04 | 123.49 | 10.2 |
|  |  | 42.54 | 94.00 | 2.1 |
|  |  | 44.87 | 70.32 | 0.9 |
| 1955-56 | Entiat | 39.94 | 121.10 | 2.7 |
|  |  | 42.40 | 94.69 | 1.3 |
|  |  | 4.74 | 78.91 | 0.7 |
|  |  | 47.38 | 63.40 | 0.6 |
|  |  | 49.21 | 55.44 | 1.1 |


#### Abstract

$62^{\circ}$ F, the highoat avarage tamporature for lots of Experiment III, the effeot of temperature upon mortality is marked. From $65^{\circ}$ to $62^{\circ} \mathrm{F}$ the increase is about 20 per cent and corresponds to a similar increase at corresponding temperatures for the lots reared at constant temperatures. Finally, there is no difference in the toleranoe to low temperatures of Saoramento, Skagit or Bntiat stooks as shown by egg mortalities. The minimum temperature was $34^{\circ} \mathrm{F}$ and ano lots fram all races were incubated at this temperature for twenty days, the descont and ascent fram the minimin being one degree overy five days.

These data are not adequate to define temperature tolerance. The toleranoc of ohinook salmon oggs to limited oxposures at high temparatures has been investigated by Donaldson (1955). He found that the exposure timo necessary to oause 10 por oent kill averaged lit, 4 and 13 days at temperatures of $67^{\circ}, 66^{\circ}$ and $63^{\circ} \mathrm{F}$, respeotively. For fingerling ohinook salmon Brett (1952) has determined the temperature tolerance.


## Abnormalitiea

The term "abnormal fish" is diffloult to define. In this report the definition is limited to individuals with morphologioal abnormalities that can be reoognised visually. For the ogg stage per cont mortality ia a good masure of abnormality, since any egg that fails to hatch is abnormal, striotly speaking.

For the fry--the stage from hatohing to feeding-mortalities were olassified as to type by the terms used by Fostor (1949) to identify abnomalities in the progexy of rainbow trout exposed to X -rays. These terms include the types of abnormalitios that were found by Welander
(1948) to ooour in the young of ohinook salnom exposed to $x$-rays in the egg stage. Identification of abnormalities was made from preserved speojmans.

In Table 17 the per cont and number of diffarent types of abnormal fy in Bxperiment $I$ are sumarised. For the fow individuals with two abnormalities, both types were recorded. The number of abnormalities increased at the extrome taperatures, but were prinoipally abnormalities suoh as "developmentally defioient," "weak body struoture" and "serous fluid" rather than the monster-like abnormalities of "spinal ourvature," "distorted jew" and "twinninge"

Growth

Efgs from lots of kxperiment I were weithed before and arter waterhardening and neer the mid-point of the inoubation periods fry were woighed and moasured once, Just after hatohing; and the fingeriings wera weighed at twoweek intorvala from May until October. Hebrits of the measurements of the eggs and fry are sumarized in Table 18.

The rata of witer absorption by the ogg was measured by plaoing 30 ogge in a ruled trough and observing the total length of the row at fireminute intervals. After 35 minutes in water the eggs had reached maximun size. At the time of plaoing the $9 g g s$ in the water the dianeter was not determined, as the ogge were soft and somenhat irregular in shape. After absorption of water the ggs were firm and spherioal and the average diameter of a sample of 30 eggs was 9.3 mm . The increase in woirht during the mater absorption period was 16.0 per oent as determined from sample of 136 agge that averaged 379 mg before and 436 mg after water-hardoning.

TAELE 1 ?

Abnormal Fry In Lct.s Reared at Constant Temperatures

| Lot | 2 | 3 | 4 | 5 | 6 | 7 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Terap. ${ }^{\circ} \mathrm{F}$ | 40 | 45 | City Wiater | 50 | 55 | 60 | $62_{2}$ |
| Number <br> Hatched | 368 | 352 | 501 | 440 | 480 | 404 | 120 |
| $\therefore$ Er Cent Abnormal | 8 | 2 | 6 | 2 | 5 | 40 | 65 |
| Number of fibncrajities by Type* |  |  |  |  |  |  |  |
| D | 5 | 3 | 10 | 1 | 2 | 53 | 32 |
| $n$ | 16 | 3 | 7 | 0 | 2 | 45 | 10 |
| s | 3 | 1 | 2 | 1 | 0 | 32 | 30 |
| C | 5 | 0 | 5 | 0 | 3 | 19 | C |
| L | 1 | 0 | 3 | 0 | 4 | 11 | 6 |
| J | 0 | 0 | 1 | 0 | c | c | 0 |
| E |  | 1 | i | 0 | c | 3 | 5 |
| T | 0 | 0 | \% | 3 | 6 | 1 | 0 |

* D, developinentally deficient; $H$, wean bcdy structure; s, sercus ifiuidi; C, spinal curvature; L, shortened body; J, diatorted jaw; E, defective eye; T, twinning
Table 18

|  | ight | Aver in mil |  | hhts and Lengt and langthe | of Eggs and <br> millimetor | Pry From Ex <br> of fomalin | riment I <br> remerved |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lot | Temp. | n | Total Weight | Yolk Woisht | Shell Mieight | Fry Holght | Fork Fieleght |
|  |  |  |  |  |  |  |  |  |
| approximate | 2 | 40 | 10 | $411 \pm 4.9$ | $313 \pm 4.0$ | $27.6 \pm 1.14$ |  |  |
| midpoint | 3 | 45 | 20 | $412 \pm 3.2$ | $319 \pm 2.2$ | $27.0 \pm .60$ |  |  |
| of | 4 | 474 | 20 | $402 \pm 3.4$ | $331 \pm 3.2$ | $26.0 \pm .44$ |  |  |
| hatching | 5 | 50 | 20 | $410 \pm 3.5$ | $335 \pm 3.4$ | $22.2 \pm .57$ |  |  |
|  | 6 | 55 | 20 | $402 \pm 3.2$ | $332 \pm 2.6$ | $24.1 \pm .27$ |  |  |
|  | 7 | 60 | 20 | $403 \pm 4.1$ | $344 \pm 3.3$ | $23.4 \pm .33$ |  |  |
|  | 8 | 47* | 20 | $404 \pm 3.8$ | $332 \pm 2.9$ | $18.4 \pm .55$ |  |  |
|  | 10 | 62 | 20 | $411 \pm 3.4$ | $355 \pm 1.8$ | $18.3 \pm .35$ |  |  |
|  | 9 | 65 | 20 | $398 \pm 2.8$ | $351 \pm 2.5$ | $16.4 \pm .32$ |  |  |
| for all lota |  |  | 170 | $405 \pm 1.3$ | $336 \pm 1.4$ | $21.7 \pm .30$ |  |  |
| Fry |  |  |  |  |  |  |  |  |
| just after hatching | 2 | 40 | 10 | $346 \pm 2.5$ | $260 \pm 2.9$ |  | $80.0 \pm 4.2$ | $24.0 \pm .40$ |
|  | 3 | 45 | 10 | $340 \pm 1.0$ | $276 \pm 2.4$ |  | $58.5 \pm 1.9$ | $22.3 \pm .13$ |
|  | 4 | 47* | 20 | $334 \pm 1.8$ | $268 \pm 1.5$ |  | $63.3 \pm 0.9$ | $22.9 \pm .12$ |
|  | 5 | 50 | 20 | $321 \pm 2.5$ | $266 \pm 1.9$ |  | $49.6 \pm 0.9$ | $21.8 \pm .23$ |
|  | 6 | 55 | 20 | $337 \pm 2.8$ | $275 \pm 2.7$ |  | $59.2 \pm 0.9$ | $22.0 \pm .08$ |
| for all lots |  |  | 80 | $334 \pm 1.1$ | $270 \pm 1.0$ |  | $59.8 \pm 1.1$ | $22.5 \pm .08$ |

For the samples withdram from the $9 g g$ lots at the estimated midpoint of inoubation the woight of the yolk as listed in Table 18 also inoludes the woight of the embryo. These values are not oomparable from Lot to lot because of two unoorreoted errorss one $1 s$ the error in estimating the mid-point of hatohing, the other is the 1088 of weight due to dehydration of the egg during the woighing prooess. The orror in estimating the mid-point of hatohing ranged from minus 28 per cent to plus 16 per cont and was dotermined by subtraoting the number of days to the mid-point of hatahing from the number of days to the time when the sample was withdrawn, and dividing this value by the number of days to the midpoint of hatohing. The loss of woight fram dohydration for an ogg bafore remopal of the shell was at the rate of 18 mg per hour. While waiting to be weighed the egge wore subjeoted to dehydration for a period of a few minutes to one-half an hour, a loos in weight of perhaps 1 to 10 mg . However, the inverse relationship between temperature and sheli weight 1 probably true oven if consideration is given to these two errors.

The weights and lengths of the newly hatched fry doorease with temperature but in an irrogular manner. The fry from the $40^{\circ} \mathrm{F}$ lot were dofinitely larger than the fy from the lots reared at higher temperatures, whioh agrees, in general, with Gray's observation. For Salmo fario Gray (1928) made the following statemont, "Mon eggs are inoubated at luw temperatures the anbryoo at the moment of hatching are signifioantly larger than those hatohing from oggs inoubated at higher temperatures." This is also probably true for the ohinook salmon, but it is to bo remombered that the fish reared at lower temperatures are also older at the time of hatohing, the age for the $40^{\circ} \mathrm{F}$ lot being 128 days as
ocmpared to 50 days for the $50^{\circ} \mathrm{F}$ lot.
During the fingerling stage lots were weighod and oounted at approximately twoweok intervals. Five lots survived to the fingerling stage, inoluding the oontrol lots whioh were reared at oity water temperature. The fish were weighed as lots rather than individuals, as it is not feasible to welgh live fish of this size individually.

To investigate growth ratos of fingerlings at constant temperatures above $55^{\circ} \mathrm{F}$ a control lot was subdivided on May 1 , five weaks after the start of fooding, into four groups of 100 omah. One group was retained at oity water temperature and the other three wore transferred to water temperatures of $60^{\circ}, 67^{\circ}$ and $74^{\circ}$. Temporatures wero raised at the rate of one degree per day fram the oity water temperature of $54{ }^{\circ} \mathrm{F}$ on May 1 to the temperature seiooted for the lot.

Growth ourves for the original lots and for the lots started on May 1 are shown in figure 2l. The difforence between lots is obvious. Prom $40^{\circ} \mathrm{F}$ upward to $55^{\circ} \mathrm{F}$ the growth rates increase and from $60^{\circ} \mathrm{F}$ upward the growth rates deorease. The average weight at 46 weeks for the $40^{\circ}$, $45^{\circ}, 50^{\circ}$ and $56^{\circ} \mathrm{F}$ lots was $0.4,3.3,12.6$ and 18.2 grams, rospeotively. For the lots started May 1 the average weights were 11.2 and 7.5 grams for the $60^{\circ}$ and $67^{\circ} \mathrm{F}$ lots. The $74^{\circ} \mathrm{F}$ lot did not survive.

The maximum growth rate for fingerlings reared at constant temperaturee oocure at about $55^{\circ} \mathrm{F}$, but the festest growth rate shown in Figure 21 is for the lot reared at oity wator temporatures. This was observed during the 30 th to 32nd woek at water temperatures of $60^{\circ}$ to $63^{\circ} \mathrm{F}$, but since it is reasonable to assume that there is a short lag in the reaponse of grourth to temperature. the optimum temperature ior this lot is

Previous to May 1, all at City Water Temperature



Figure 21. Wedight Curves for Experiment I
likely to be during the 28 th to 30 th week at temperatures of $67^{\circ}$ to $60^{\circ} \mathrm{F}$. The effeot of mortality upon growth rate was slight for the lots that survivad from the beginning of the experiments (November 15), as fingerling mortality was less than $5 \%$ oxcept for Lot 2 which failed to foed. In the experiment atarted May 1 the $74^{\circ} \mathrm{F}$ lot died in 15 weeks and the mortality was greater than $80 \%$ in 22 weeks for the lot at $67{ }^{\circ} \mathrm{F}$. * The growth rates for the $74^{\circ}$ and $67^{\circ} \mathrm{F}$ lots are less reliable for this reason. In conolusion, the optimum temperature for fingerling growth is between $55^{\circ}$ and $60^{\circ} \mathrm{F}$. The growth rates by temperature lots deoresse in regular order on either side of the optimum.

Meristic Characters

The classifloation of fishos espeoially as to speoies dopends to a great extent upon the oount of meristio oharaoters. Also, the use of meristio characters, partioularly vertebrae, became a widely aooepted method for defining races after Heincke's investigations in 1898 on the races of herring.
gven before Heinoke's investigations the goographioal differences in vertebrae number within species had been associated with temperature. Gabriel (1944) wrote as Eoliows:

Following the early seneralizations of Günther (1862) and Gill (1863) that the number of vertobrae is higher in genera of fishes inhabiting northern latitudes then in related fishos from tropical regions. Jordan (1891) prepared a "Law" setting forth an inVirse relationship between the vertebrae number of a speoies and the water temperature provaling in its geographic ranfe.
*The upper lethal temperature limit for chinook fingerlings as atated by Brett (1952) is between 24 and $24.5^{\circ} \mathrm{C}$ ( $75^{\circ}-76^{\circ} \mathrm{F}$ )。

Fram Jardan's "law" and Heinckn's work the idea doveloped that racial differences oould result from the offect of temperature upon meristio oharacters.

A great many racial studies conflim Jordan's "law." A few of these aro Hubbs (1925), Rounsefoll and Dahlgren (1932), Toster (1958) and MoRugh (1964b) on the herring; Sahmidt (1930) on the ood; Woisel (1955) on the oyprinids; and Mottley (1937) on the trout. However, racial stud1es have two shortconings when used to demonstrate the offoct of temperaturo upon meristic oharaoters. One is that temperatures during development aro estimated, not knoms and seoondly, the oounts of the meristio oharactors of the parents are undenom.

Laboratory experiments on meristio oharacters of fish are few. Thning (1952) reviewed these experiments, which include Schmidt (1917. 1919, 1920 and 1921), Mottlay (1934 and 1957), TRing (1944. 1946 and 1950), Gabriel (1944), Heuts (1947 and 1949) and Dannorig (1950). To this list Marobmann (1954) and Lindsoy (1954) ahould be added. Conolusions fram these experiments are that olther low oxygen or high $\mathrm{CO}_{2}$ preseure inoreases the number of vertebraos pH in the range 6.4 to 7.8 . ege sise, fry size, or early or late hatahing have no effect on vertebrac numbers and salinIty and temperature modify both vertebrae and fin ray number.

Modification of vertebrae number by tomperature has not been consistent in the laboratory experiments. Schmidt (1921), TRning (1950) and Lindsey (1954) have shown that the lowest number of vertebrae occurs at intermediate temperatures while the results of experiments by Gabriel (1944) and Dannevig (1950) show an Inorease in numbor of vertebrae with deoreasing temperature.

In the present experiments oounts were made of vertebrae, dorsal rays and anal rays to investigate the variability assoolated with temperature that oocurs in the maristic oharacters of the ohinook almon.

Vartebrae. The number of vertobrae was determined by oounting the centra between the basioooipital and the urostyle." The vertebrae as seen in a radiograph are shown in Figure 22. Whon abnormal vortebrae ware enoountered, the number was determined by counting the aroh elements, but when both the oontra and aroh elements were in doubt, no count was made. In the onudal area the oentrum was oounted as one if separation was not ocmplete.

The vertebrae counts of lots from Experiments I and II are reoorded in Table 19 and shown graphically in Piguro 23. The u-ahaped ourve of Experiment I shows that the number of vertebrae inoreases at both high and low temperatures and is similar to the findings or Sohmidt (1921) and Tlining (1952) for the sea trout and Lindsey (1954) for the paradise fish. The data for Experiment II are limitod to the high temperatures but substantiate the Experiment I data for those temperatures.

For Experiment III the record of vertobrae oounts is tabulated in Table 20 and is show graphionlly in Figure 24. These data do not show the sam inorease in the number of vertebrae at high and low tomperatures as was seen in the Experiment I data; on the other hand, there is no deorease in vertebrae number at high temperatures suoh as was found by Gabriel (1944) and Dannovig (2950).

The temperatures given in Table 20 and Pigure 24 are the average values during the inoubation period but more properly ahould represent

* Vadyicov (1964) atatess Mrostyle is the posterior terminal segment whion follows the last undoubted oentrum. In Salmonidae the urostyle remains non-ossified."


[^7]TASLE 19



FIgure 23. Lverage Fumber of Vertebras and Temperature for Lots of Brperiments I and II
TABIE 20

| Lot | $\begin{aligned} & \text { Temp. }^{O_{F}} \\ & \hline \end{aligned}$ | 63 | 64 | 65 | 66 | 67 | $\begin{gathered} \text { Number } \\ 68 \\ \hline \end{gathered}$ | $\begin{aligned} & 0 \mathbf{f} \\ & 69 \end{aligned}$ | $\begin{gathered} \text { Vert } \\ 70 \end{gathered}$ | rae 71 | 72 | 73 | 74 | 75 | 76 | 77 | '78 | $\overline{\mathrm{x}}$ | n | ${ }^{3} \overline{\mathrm{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sa 1 | 39.0 |  | 5 | It | 44 | 18 | 1 |  |  |  |  |  |  |  |  |  |  | 65.93 | 84 | . 091 |
| 2 | 41.6 | 1 | 7 | 51 | 67 | $3:$ | 8 | 6 | 3 |  |  |  |  |  |  |  |  | 66.09 | 182 | . 089 |
| 4 | 50.5 |  | 1 | 23 | 127 | 98 | 13 |  |  |  |  |  |  |  |  |  |  | 66.39 | 2.52 | . 047 |
| 5 | 62.2 |  |  | $\stackrel{7}{1}$ | 11 | 14 | 1 | 1 |  |  |  |  |  |  |  |  |  | 66.35 | $3 i$ | . 163 |
| 6 | 55.5* |  | 16 | 105 | 133 | 36 | 3 |  |  |  |  |  |  |  |  |  |  | 65.67 | 296 | . 046 |
| Sk 4 | 35.9 |  |  |  | 1 | 25 | 104 | 31 | 13 |  |  |  |  |  |  |  |  | 68.36 | 224 | . 052 |
| $5$ | 01.3 |  |  |  | 3 | 20 | 30 | 15 | 3 |  |  |  |  |  |  |  |  | 67.93 | 71 | . 109 |
| $6 \times 4$ | $34.7 \%$ |  |  |  |  | 5 | 6 | 18 | 33 | 24 | 15 |  |  |  |  |  |  | 70.09 | 101. | .130 |
| $\cdots 1$ | 89.6 |  |  |  |  |  | 4 | 26 | 46 | 23 |  |  |  |  |  |  |  | 69.89 | 99 | . 081 |
| 2 | tr1.6 |  |  |  | 2 | 1 |  | 5 | 9 | 4 |  |  |  |  |  |  |  | 69.43 | 21 | . 320 |
| 4 | 56,3 |  |  |  | 2 |  |  | 12 | 10 | 5 | 1 |  |  |  |  |  |  | 69.57 | 30 | . 233 |
| 6 | 55.14" |  |  | $i$ | 1 | 1 | 14 |  | 25 | 2 |  |  |  |  |  |  |  | 69.07 | 84 | . 104 |
| $E \quad 1$ | 38.8 |  |  |  |  |  |  |  | 10 |  | 29 | 4 |  |  |  |  |  | 71.33 | 82 | .033 |
| 3 | 48.4 |  |  |  |  |  |  |  | 5 | 14 | 6 |  |  |  |  |  |  | 71.03 | 30 | . 355 |
| 4 | 55.2 |  |  |  |  |  |  |  | 3 | 243 | $\cdots 7$ | 29 | 3 | 1 |  |  |  | 71.73 | 432 | . 631 |
| 5 | 61. 3 |  |  |  |  |  |  |  | 5 | 65 | 114 | 56 | 1. | 2 | 3 | 1 |  | 72. l | 257 | . 064 |
| 6** | 55.2 |  |  |  |  |  |  |  | 2 | 8 | 13 | LC | 107 | $\pm 37$ | 7 | 28 | 1 | 74.72 | 392 | . 056 |



## Figure 2h. Average thumber of Vertebrae and Temperatures for Iots of Experiment III

the tamperatures at the time the number of vertebrae is determined. Tln1ng (1952) has shown that the plastio period for determination of the number of vertebrae in Salmo trutta trutta ie from 145 to $165 \mathrm{D}^{\circ}$ (day degrees with temperature in degrees contigrade) for which the total inoubation period is $400 \mathrm{D}^{0}$. Using temperature values caloulated on the basis that the plastio period for ohinook salmon is the same as for Salmo trutta trutta, the ourves expressing the relationship between temperature and the number of vertebree in Experiment III were shifted to the right but ohanged only slightly in ahapo.

To prodide information fram whioh the plastia poriod for vertebrae formation in the ohinook salmon oould be established the eight sublots of Experiment I were tranaforred to water of oither higher or lower teanparatures at various times during ambryologial development. Fry fram same of these lots survived to a sise auitable for staining or radiographing but were too fow to make acourate observations concerning the plestic period for vertebrae formation. However, in Experiment III the data fram Lot E 6 suggest that the plastio poriod begins before the $21 a t$ day for eggs that hatoh in 46 days. Lot $E 6$ was incubated in water of low oxygen oontent for the first 21 days, after whioh the oxygen level was normal. The number of vertebras in this lot was greater by 2.6 thar in any other Entiat lot at either highor or lower temperatures, and for thia reason it is belleved that the plastic period for the vertebrae of the ohinook almon of this lot began before the $218 t$ day of incubation. From the Bxperiment III data in Table 20 the groat variability in number of vertebrae between stooks oan be seon. The racial averages of the lota for all temperatures are about 66 for Saoremento, 68 for Skagi:, 69 for Green and 72 for Entiat. Sy Ginsburg's (1938) definition the
differenoe between the Sacramento and Entiat raoes is equivalent to a species differenoe since the overlap in the vertobral counts of the two races is less than ton por oont.

The number of vertobre was gonerally groater than the 66 reported by Jordan and Evermann (1896) for the species. From the report by foerster and Pritohard (1935) the average number of vertebrae for chinook salmon was alculated to be $69.10 \pm 0.14$, and from Townsend (1944) the avorage was 67.4. The range for Bxperiments I, II and III was 63 to 77 (for lots other than E 6).

Thero was a marked inorease in the number of vortebras in Lots Sk 6 and E 6 which were acoidentally inoubated in water of low axygen content. These lota were not included in the average values for the Experiment III deta because of the abnormal oonditions. The average mumber of vertebrae for Sk 6 was 1.73 greater than for any other Skagit lots and for E 6 the inoremse was 2.82 over other Entiat lots. Since there were no other obvious differences between Lots E 6. Sk 6 and other lots, exposure to water of low oxygen content is assumed to have caused the increase in the number of vertebrae. There is substantiating ovidence as to this oonclusion from $\operatorname{laning}$ (1952), who found that low oxygen content during incubation inoreased the number of vertebrae. In the range from 58 to 98 per oent oxygen saturation the inorease in pertebrae of the sea trout Was about 0.1 for esch 10 per oent doorease in axygen saturation (see Fig. 7, op. oit.). The offect of higher or lower oxygen levels upon number of vertebrea is not known.

Under the conditions that existed in Experimont III genotypio variation in the number of vertebrae was greater than phenotypic variation.
difference betreen the Sacramento and Entiat races is equivalent to a spocies difference since the overlap in the vertobral counts of the two races is less than ton por oont.

The number of vertebree was generally greater than the 66 reported by Jordan and Eremmann (1896) for the species. From the report by Foerster and Pritohard (1935) the average number of vertebrae for chinook salmon was calculated to b $69.10 \pm 0.14$, and from Townsand (1944) the average was 67.4. The range for Experiments $I$, II and III was 63 to 77 (for lots other than E 6).

There was a marked inoroase in the number of vortebras in Lots Sk 6 and E 6 which were aocidentally inoubated in water of low oxygen oontent. These lots were not included in the sverage values for the experiment III data bocause of the abnormal oonditions. The average number of vertebrae for Sk 6 was 1.75 greater than for any other Skagit lots and for E 6 the incremse was 2.62 over other Entiat lots. Since there were no other obvious differences between Lots E 6, 8k 6 and other lots, exposure to water of low oxygen content is assumed to have caused the increase in the number of vertebrae. There is substantiating ovidonce as to this conclusion from TAning (1952), who found that low oxygen oontent during incubation increased the number of vertebrae. In the range from 58 to 98 per oont oxygen saturation the inorease in vortebrae of the soa trout was about 0.1 for each 10 por oent dearease in axygen saturation (see Fig. 7. op. eit.). The offect of higher or lower oxygen levels upon number of vertebree is not known.

Under the conditions that existed in Experimont III genotypio variation in the number of vertebrae was greater than phenotypic variation.


III


Figure 25. Temperature and Per Cent of Chinook Salnon with Abnormal Vertebrae for Lots of Experiment I, II and III
ebout one vertebre groater in the offapring than in the parents. If this differono is due to phenotypical variation oaused by some factor in the enviroment, it is essumed that the offeot is equal for all lots.

In oonolusion, the lowest number of vertebrae are found at the internodiate temporatures in the range from $45^{\circ}$ to $55^{\circ} \mathrm{F}$. The average number of vartebrac is about 66 for Saoramento, 68 for $5 k a g i t, 69$ for Green and 72 for Entiat. Above $60^{\circ}$ and below $40^{\circ} \mathrm{F}$ the number of individuals with abnormal vertobrac inoreases. Low oxygen oontent of water during inoubation inoreases the number of vertobrac.

Dorsal rays. In counting the rays of the dorsal fin all olenents were inoluded. Usually, in systematios, the small rays at the front of the fin that are less than one-half the longth of the longest rays are not coumted. Whan ostimating temperature offocts, there is no reason for not oounting all oloments. The base of all raya showed clearly in both the radiographs and the stained specimens. but sometimes the longest rays oould not be measured.

The number of dorsal rays reported for those oxperiments is greater than the number reported in the 11torature. Jordan and Evermann (1896) 11st 11 dorad rays for the apocies; Foerster and Pritohard (1935), 11 to 14; Clamens and Wilby (1948), 10 to 14. The observad values for EX periments I, II and III ranged from 13 to 18 . For all three experiments the doral ray counta are rocorded in Table 21 and are shown graphically in Figure 26. Phe ourves are consistent for both the constant temperature and ohanging temperature experiment: with the maximum number of rays in the $45^{\circ}$ to $55^{\circ} \mathrm{p}$ temporature range. This in opposite to the effoot of temperature upon the number of vertebrae. tining (1952) reported

TABLE 21

Numbers of Dorsal Thays Ior Chinook jelaon in Exierinents I, II and III

| Exp. | Lot | $\operatorname{Tamp}_{\mathrm{Tam}_{F},}$ | 13 | 14 | 15 | 16 | 17 | 18 | ヌ | n | ${ }^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | G 2 | 39.8 |  | 10 | 91 | 32 |  |  | 15.17 | 133 | . 047 |
|  | 3 | 44.7 |  |  | 34 | 147 | 10 |  | 15.87 | 191 | . 034 |
|  | 5 | 50.6 |  |  | 27 | 191 | 33 |  | 16.02 | 251 | . 031 |
|  | 6 | 55.1 |  |  | 9 | 41 |  |  | 15.82 | 50 | . 055 |
|  | 7 | 60.2 |  | 3 | 10 |  |  |  | 14.77 | 13 | . 122 |
|  | 4 | 47.4* |  |  | 18 | 169 | 17 |  | 16.00 | 204 | . 029 |
|  | 8 | 47.0 |  |  | 32 | 188 | 14 |  | 15.92 | 234 | . 029 |
| II | G 3 | 54.6 | 2 | 11 | 65 | 14 |  |  | 14.99 | 92 | . 063 |
|  | 5 | 57.8 | 5 | 56 | 16 | 1 |  |  | 14.17 | 78 | . 062 |
|  | 4 | 58.5* | 2 | 42 | 37 |  |  |  | 14.43 | 81 | . 061 |
| III | Sa 1 | 39.0 | 1 | 17 | 17 | 4 |  |  | 14.62 | 39 | . 114 |
|  | 2 | 41.6 |  | 1 | 5 |  |  |  | 14.83 | 6 | . 166 |
|  | 4 | 56.5 |  | 12 | 140 | 57 | 2 |  | 15.23 | 211 | . 038 |
|  | 5 | 62.2 | 2 | 8 | 11 |  |  |  | 14.43 | 21 | . 148 |
|  | 6 | 55.5** |  | 25 | 143 | 88 | 2 |  | 15.26 | 258 | . 040 |
|  | G1 |  |  | 2 | 3 |  |  |  |  | 9 |  |
|  |  | $56.3$ |  |  | 1. | 12 | 2 |  | 15.57 | 28 | . 120 |
|  | $6^{7}$ | $55.4{ }^{\text {xi4 }}$ |  | 1 | 28 | 36 | 2 |  | 15.58 | 67 | . 071 |
|  | Sk 4 | 55.9 |  |  | 14 | 26 | 1 | 1 | 15.74 | 42 | .097 |
|  | $\stackrel{\rightharpoonup}{5}$ | 61.38 |  |  | 11 | 6 | 1 |  | 15.44 | 18 | .145 |
|  | $6^{H}$ | $54.7{ }^{\text {ak }}$ |  |  | 8 | 32 | 3 |  | 15.88 | 43 | . 076 |
|  | $\pm 1$ | 38.8 |  |  | 14. | 11 | 5 |  | 15.70 | 30 | . 137 |
|  | 3 | 48.4 |  |  | 3 | 16 | 2 |  | 15.95 | 21 | . 109 |
|  | 4 | 55.2 |  | 1 | 36 | 133 | 16 |  | 15.88 | 186 | . 039 |
|  | 5 | 01.3 |  | 1 | 68 | 86 | 5 |  | 15.59 | 160 | . 044 |
|  | $6^{*}$ | 55.2** |  |  | 19 | 159 | 46 | 1 | 16.13 | 225 | . 036 |

```
* At city water temperature
**At well water temperature
* Water of low oxyeen content during incubation
```

16.0

a. $\cdots \cdots$
15.5

## 

o
15.0

Q
$\circ$ I
74.5

0.



Figane 26. Average Number of Dorsal Rays and Temperature for Lots of Experiments I, II and III
a similar situation for the soa trout.
In conolusion, the maximum number of doras rays ooourred in the temperature range of $45^{\circ}$ to $55^{\circ} \mathrm{F}$; this 1 s opposite to the effect of temperature upon vertebrae.

Anal rays. In counting the rays of the anal fin all elements were inoluded. The same argment for using all the eloments of the dorsal fin also provails for the anal fin and, likewise, the number of anal rays reported for these oxperimonts is greater than reported in the litorature.

Jordan and Everman (1898) 11st 16 anal rays for the speoies. Other authors give the following number: Sishlte (1931), 15 to l6; Foerster and Pritchard (1935), 16 to 18; Clemons and Wilby (1946), 15 to 19. The obserted ralues for Experiments $I$, II and III ranged from 16 to 21 (for lots othor than $E$ 6). The counts of the anal rays are tabulated in Table 22 and shown graphiaally in Plgure 27. Maxinum values are in the range of $45^{\circ}$ to $55^{\circ} \mathrm{F}$ with lower values on either side of this range. For the soa trout T\&ning (1952) also found that the number of anal rays was greatest at intermediato temperatures.

In oonclusion, as with the dorsal rays the maximum number of anal rays oocurred in the temperature range of $45^{\circ}$ to $55^{\circ} \mathrm{F}$.

T'ABLE 22

Numbera of Anal Reys for Chinook Salmon of Experiments I, II and III

| Exp. | Lot | $\operatorname{Tomp}_{\substack{\text { Tomp } \\ O_{F}}}$ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | $\bar{x}$ | n | $s_{\bar{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | G 2 | 39.8 |  |  | 15 | 62 | 40 | 2 |  |  | 19.24 | 119 | . 063 |
|  | 3 | 44.7 |  |  |  | 45 | 124 | 20 |  |  | 19.87 | 189 | . 042 |
|  | 5 | 50.6 |  |  | 1 | 51 | 164 | 21 |  |  | 19.86 | 237 | . 036 |
|  | 6 | 55.1 |  |  |  | 16 | 27 | 1 |  |  | 19.66 | 4 | . 079 |
|  | 7 | 60.2 |  | 1 | 6 | 4 |  |  |  |  | 18.27 | 11 | . 195 |
|  | 4 | 47.4* |  |  | 2 | 85 | 118 | 6 |  |  | 19.61 | 211 | . 039 |
|  | 8 | 47.0 |  |  | 1 | 63 | 117 | 8 |  |  | 19.70 | 189 | . 040 |
| II | G 3 | 54.6 |  | 2 | 18 | 24 |  |  |  |  | 18.50 | 44 | . 089 |
|  | 5 | 57.8 | 1 | 38 | 43 | 5 |  |  |  |  | 17.60 | 87 | . 066 |
|  | 4 | 58.5* |  | 5 | 33 | 4 |  |  |  |  | 17.98 | 42 | . 072 |
| III | Sa 1 | 39.0 | 1 | 11 | 15 | 6 |  |  |  |  | 17.79 | 33 | . 136 |
|  | 4 | 56.5 |  | 9 | 123 | 93 | 11 | 1 |  |  | 18.46 | 237 | . 043 |
|  | 5 | 62.2 |  | 17 | 11 | 1 |  |  |  |  | 17.45 | 29 | . 106 |
|  | 6 | 55, 5 ** |  | 21 | 167 | 101 | 3 |  |  |  | 18.29 | 292 | . 036 |
|  | G 1 | 39.0 |  |  | 7 | 6 |  |  |  |  | 18.46 | 13 | . 144 |
|  | 4 | 56.3 |  |  | 5 | 15 | 9 |  |  |  | 17.14 | 29 | . 129 |
|  | 6 | 55.4** |  | 1 | 23 | 49 | 10 |  |  |  | 18.82 | 83 | . 071 |
|  | Sk 4 | 55.9 |  |  | 11 | 46 | 8 |  |  |  | 18.95 | 65 | . 067 |
|  |  | 61.3 |  |  | 8 | 12 |  |  |  |  | 18.60 | 20 | . 112 |
|  | 6 | 54.7** |  |  | 9 | 54 | 11 | 1 |  |  | 14.05 | 75 | . 066 |
|  | E1 | 38.8 |  | 1 | 15 | 20 | 2 |  |  |  |  |  | . 102 |
|  | 3 | 48.4 |  |  | 3 | 13 | 7 | 1 |  |  | 19.25 | 24 | . 150 |
|  | 4 | 55.2 |  | 1 | 20 | 149 | 82 |  |  |  | 19.24 | 252 | . 038 |
|  | 5 | 61.3 |  | 15 | 89 | 86 | 25 | 6 |  |  | 18.63 | 221 | . 059 |
|  | 6\# | 55.2** |  |  | 9 | 19 | 78 | 185 | 69 | 5 | 20.82 | 365 | . 048 |

* At e1ty water temperature rrat well water temperature
\# Water of low oxygen content during incubation


Figure 27. Average 保mber of Anal Rays and Temperatures for Lots of Experiments I, II and III

VII, SUMMAFY

The observations from three exporiments uph the aifects of temperature on young chinook salnon are as follows:

## Rate of development

(1) The temparature coofficients $u, Q_{10}$ and $x$ are not constant for the relationshif of temperiture to the rumber of days to netching. The values for the coef:icients are considerajly ereater at low than at aigh temperatures wita a ritical tenperature atout $47^{\circ} \mathrm{F}$,
(2) For lots reared i.t constant terqeratires in tue ranse from 39.80 io $5 \% .8^{\circ} F$, the temperature summation rule, tat belehradok equation and the losistic curve fit equalily well io the relationship of tempreture to the numper of days ti hatching.

Por the temerature summation rule, $y(x-a)=k$, where $y$ the number of days to the time when 50 per cent of the egss are hatched. at an incubation temperature oix $\underline{x}$, $\underline{a}$ is the tnreshold tenpurature and $\underline{k}$ is the temerature summation constant, new aetriods for estimating $\underline{\theta}$ and $k$ and a confidence interval lor are given. The value for $K$ is shown to be equal to the reciprocal of the resession the speed of development on temperature; one estimate of a $1 s \frac{x_{1} y_{1}-x_{2} y_{2}}{y_{1}-y_{2}}$; a second estimate of E is $\overline{\mathrm{x}}-\mathrm{k}\left(\frac{I}{j}\right)$; the confidence interval for the second estimate of $\underline{a}$ is alx efven. For the four races of chincok salmon the values for a range ircon $31.1^{\circ}$ to $32.7^{\circ}$ F for k , from 815 to 1020.

The b value of Bêlehrádek's equation is 0.97 for the data corrected for a threshold temperature of 33.80 F and 1.12 for the uncorrected data, that is the threshold tamperature is assumed to be $32^{\circ} \mathrm{F}$ or $0^{\circ} \mathrm{C}$.

Following is the equation of the logistic curve that best fits the temperature-developent relationship for lots reared at conetant temperatures:

$$
y=\frac{1+e^{2.46-0.242 x}}{.0396}
$$

when the incubation temperature, $x$, is in degrees centigrade.
(3) The chinook almon ogga from the Sacramento River dovelop 8 per cent faster than those fram the Entiat River. The rate of devolopment of the egge from the Skagit and the Green Rivers is intermediate.
(4) Using data from all lota resardless of race, mortality rate, temperature pattern, or year the quation that best fits the relationship of the number of days to hatching, $y$, and the incubation temperature, $x$, in degrees centigrade is the logistic curvo of the form

$$
y=\frac{1+e^{2.306-.2022 x}}{.04404}
$$

for which the standsrderror of estimate is 3.14 .
(5) Water of low oxyigen content during incubation increases the number of days to hatching about 18 per cent at average water temperatures of $55^{\circ} \mathrm{F}$.
(6) The snortest hatching period occurs in lots reared in the temperature range $40^{\circ}$ to $58^{\circ} \mathrm{F}$ for wich the $5-95$ parcentile range is less than five days.
(7) Short hatching periods are associated with high survivals.

## Mortazity

(1) For the lots reared at $34^{\circ} \mathrm{F}$ or $65^{\circ} \mathrm{F}$ and higher none of the aggs survived to the hatching stage.
(2) Une hundred per cent mortality occurs during the yolk-sac stage in lots reared at $60^{\circ}$ and $62 \frac{1}{2}^{\circ} \mathrm{F}$.
(3) Lit constant temperatures of $55^{\circ}$ and $57 \%^{\circ} \mathrm{F}$ the lots hatch successfully but during the yolk-sac stage, mortality increases to $5 u$ per cent or greater.
(4) The ..ortality rate is low at all stages of development for lots reared at temperatures between $40^{\circ}$ and $55^{\circ} \mathrm{F}$.

## Abnormal fry

In the temperature range $40^{\circ}$ to $55^{\circ} \mathrm{F}$ the number of abnormal fry averages 4.0 jer cont per lot and at $60^{\circ} \mathrm{F}$ and higher thare is a ninefold or greater increase.

Growth
(1) At hatching the fry reared at $40^{\circ} \mathrm{F}$ are larier than those reared at higher temperaturea.
(2) The growth rate for lots reared at constant temperature is greatest at $55^{\circ} \mathrm{F}$ and decreases in relation to the distance from the optinum for lots at other temperatures.
(3) For lots reared at city water temperatures, the fish are sinalior at the 20 th weex of the experiment than the fish reared at a constant temperature of $55^{\circ} \mathrm{F}$, but are of the amo size by the 46 th weok. Moot rapid growth oocurs when the temperature is near $60^{\circ} \mathrm{F}$.

## Meristic characters

(1) For lots reared at constant temperatures the average number of vertebrae is fewer in the temperature range from $45^{\circ}$ to $55^{\circ} \mathrm{F}$ than at either higher or lower temperatures.
(2) For tho Sacramento, jkafit, Green and kintiat races the number of vertebrae averaje 66, 08, 69 and 72 and range fran 63 to 78.
(3) For lots reared at temparatures above $60^{\circ} r$ and below $40^{\circ} r^{\prime}$ the number of individuals with abnornel vertebrae increase.
(4) water of low oxysen content during the incubation period increasea the avarage number of vertebrae per lot as much as 2.4.
(5) The average number of both dorsal and anal rays is greater for the lote reared in the temperature range $45^{\circ}$ to $55^{\circ} \mathrm{F}$ than for lots reared at either higher or lower temperatures. This is the opposite of the effect of tequarature uf on the number of vertobrae.

## LITERATURE CITED

```
ANDREWARTHA, H. G. and L. C. Birch
    1954 The distribution and abundance of animals
        Chicayo, University of Chicago Fress. 782 pi.
APSTEIN, C.
    1909 Die bestimmung des ilters pelasisch lebender Fischeier,
        Nittoilunger des Deutschen Seefischerei-Vereins, 25(2):364-37).
        Translated by M. Crull.
bE\LEHRÁDEK,J.
    1929 Sur la aifnification des coefficients de temperature.
        irotoplasma, 7(2):232-255. Translated by U. #erriman.
BEILHRÁDEK, J.
    1935 Temperature and livin matter.
        f'rotoplasma ionografnien 8 (Berlin). 277 rf.
bellliNG, D. L., M. J. Fendar and j. A. Rodd
    1932 The early srowth of selincn parr in lanadian natcheries.
        Trans. an. Fishurios joc., 62:211-223.
bCiNHAN, K. and ii. H. Bayliff
    195; fadiography of small fistes for meristic studies.
        Copeia, 1953(3):150-151.
GRETT, J. R.
    1952 Temperature tclerance in young Faciric salman, genus
        uncorhynchus.
        J. Fishries Research Board ian., y(0):265-s23.
BRLININU, T. U.
    lyj2 The influence of temferature on the rate of deveiojnent of
        insecta, with spacial reference to the eoors of iryllulus
        commodus wialker.
        mustralian J. З`ci. Kes., B5:45-111.
BUKNER, C.J.
    1%51 Characteristic s of spawnine nests of Columbia niver salnon.
        U. S. Fish Wildife Service, Fishery Bull., 52(61):97-110.
BUEGC;''S, R.
    1956 MS.
CLEKENS, '̈. A. and G. V. Willby
    1946 Fishes of the Pacific corst of Canada.
            Fisheries Research Board Can., Bull. 68, 368 pp.
```

```
    CLOTHER, C. R.
        1950 A key to soma southern Califormia fishes based on vertebral
            oharacterz.
                            Calif. Fish Game, Flsh. Bull. 79, 83 pp.
COPE, O. B.
        1949 Water temperaturs records fran California's Central Valley,
                1939-1948.
                    U. S. Flah Wildilfe Sorfice, Speoial Soientific Report: Fish-
                    erles No. 2, 77 pp.
COPE, O. B.
    1952 Water temperaturos of California's Contral Valley, 1949-51.
                            U. S. Fiah Wildlife Sorvioe, Speoial Soientific Report: Fish-
                        eries No. 75, 48 pp.
COSTE, J. J.
    1858 Instructions pratiques sur la pisioulture.
                            2nd od. Paris. 144 pp.
                        Cited fram Hayes, 1949.
CREASER, C. W.
    1930 Relative importance of hydrogen-ion conoentration, temperature,
        dissolved axygen, and carbon-dioxide tension, on habitat selec-
        tion by brook-trout.
                Eoology, 11(2)!246-262.
DANNEVIG, A.
    1960 The influence of the envirorment on number of vertebrae in
        plaioe.
        Fiskeridiroktaratets Skrifter (ieports on Norwagian Fishery
        and Marine Invostigation). Serie Harunderspkelser, 9(9):8 pp.
DASNEVIG, H.
    2895 The influenoe of temperature on the development of the egge of
        fishes.
        Sootland Fishery Board (Glasgow). Ann. Rep. for 1894, Scienti-
        fic Invest., 25(3):147-152.
DAVIDSON, J.
    1944 On the relationship between temperature and rate of development
        of inseots at constent temporatures.
            J. Animal Eool., 18(1),26-88.
DAFY, J.
    1856 On the vitality of the ova of the Salmonidae of different ages.
        Froc. Royal Soo. (London), 8:27-35.
DONALDSON, J. R.
    1950 A problem on the rolation of oold temperatures to the develop-
        ment of sockeye salmon oggs.
        MS.
```



```
GRAY, J.
    1928 The growth of fish. III. The effeot of temperature on the
                                    development of the eggs of salmo fario.
                                    Brit. J. Exp. Biol., 6(2):125-130.
GREEN,S.
    1870 Trout oulturo.
                            Rochester, New York, Press of Curtis Morey & Co. 90 pp.
"
GUNTHER, A.
    1862 Catalogue of the fishes in the British Museum.
                British Musoum (Natural History). Zoology Dopartment (London),
                4:534 pp.
HAYES, F. R.
    1949 The growth, genaral ohemistry and temperature relations of
                    salmonid eggs.
                    Quart. Rev. Fiol., 24(4),281-308.
HEINCKE, F.
    1898 Naturgoschiohte dos Herings. Toil I. Die Lokalformen und die
    Fanderungen des Herings in don ouropaischen Meeren.
    Abhandlungon des Deutschen Soef1sohore1-Vereins, 2(1):1-238.
    cited from Sokmidt, 1917.
HETTS, M. J.
    1947 Experimental studies on adaptive evolution in Gasterosteus
            aculestus L.
            Evolution, 1:89-102.
HEUTS, K.J.
    1949 Racial divergenos in fin ray variation patterns in Gasterostous
    aculeatus.
    J.Goneto, 49(3):183-191.
HOLIISTER,G.
    1934 Clearing and dyeing flish for bone study.
            20010g10a, 12,89-101.
HOURSTON, H. R.
    1953 Correspondonce of August 12, 1953.
HUBBS, C. L.
    1925 Racial and seasonal variation in the Paoiflc horring. Califor-
            nia aardine and California anchovy.
            Calif. Fiah Gamo, Fish. Bull. 8, 23 pp.
JACKSON, R.
    i953 Correspondence of July 17. 1953.
```



```
MARCKMANN, K.
    1954 Is thare any correlation botweon metabolism and number of
    vertobrae (and othor moristic oharaoters) in the sea trout
    (Salmo trutta trutta L.)%
    Meddeleser fra Dammarics Fiakeri, Og Favundorsogelser Ny
    Sorio, 1(3):1-9.
MATTSON, C. R.
    1848 Spawning ground studies of Willarntte River spring chinook
    salmon.
    Oregon Fish. Comm. Res. Briefs, 1(2):21-32.
MOHUGH, J. L.
    1954a The influence of light on the numbor of vertebrae in the grun-
    ion, Leuresthes tonuis.
    Cope12, 1954(1):23-25.
MoHUGH, J. L.
    1954b Geographic variation in the Paoific horring.
    Copela, 1954(2):139-151.
MERRIMAN. D.
    1935 The offect of temperature on the development of the eggs and
    larvae of the out-throat (Salmo olarkil clarkii Riohardson).
    j. Exp. Biol., 12(4):287-505.
MOFFETTS, J. W. 
    1949 The first four years of king-salmon maintomanoe below Shasta
    Dam, Sacramonto Rivor, California.
    Calif. Fish Geme, 36(2):77-102.
MOTMLEI, C. MoC.
    1934 The offoot of temporature during development on the number of
    soales in the Kamloops trout. Salmo kamloopa Jordan.
    Contrib. Can. Biol. and Fishorios, nos., 8(20):254-263.
MOTYLEY, C. MoC.
    1937 Tho number of vertebrae in trout (Salmo).
            J. B101. Board Can., 5(2),169-176.
NORRIS,T.
    1868 Amerioan fich culture, ombracing all the details of artificial
    breoding and roaring of trout; the oulture of salmon, shad and
                        other fishes.
                            Philadelphia, Portor and Coatos. 304 pp.
OLSON, P. A. and R. F. Poster
    1056 Temperature toleranoe of oggs and young of Columbia River ohin-
        ook salmon.
        To be publisined in Volume 85 of the Trans. Am. Fisheries Soo.
```

```
PEARL, R. and L. J. Reod
    1920 On the rate of growth of the population of the United States
        sinoe 1790 and ita mathumatical representation.
        Pro.Nat. Aoad. Soi. U. S., 6(6):276-288.
PELNAR, J.
    1953 Correspondence of November 17. 1953.
PRICE, J. W.
    1940 Time-temperature roletions in the inoubstion of the whitefish,
        Corogonus olupoaformis (Mitohill).
        J. Gon. Phy8iol.. 2S(4):449-468.
REAUMUR; R. A. F.
    1788 Observations du thermometre faites a Paris pondont l'année
        MDCCXXV.
        Mémoires de Mathématique ot de Physique Année 1735, pp. 545-
        576. (In Flstoire de l'Aoadomio Royale des Soiences, Paris).
        Cited from Thompson, 1952.
REIBISCH, J.
    1902 Uober don Elnfluss der Temperetur auf die Entwiokelung von
            Pisch Eiorn.
            Wiseonsohaftlicho Meeresuntersuohungen. Kiel (abt. Kiel),
            n.8., 6(2):213-231.
ROCKFELL, J.
    1956 Same offeots of sea water and temperature on the embryos of
        the Paoific salmon. Oncorhynohus Eorbuscha (Falbaum) and Onoor-
        hynchus keta (Walbaum).
        A theals submitted in partial fulsillment for the degree of
        Dootor of Philosophy, Seattle. University of Washington. 418 pp.
```

RONNSEPELL, G. A. and E. E. Dahlpren
1932 Fluotuations in tho supply of horring. Clupes pallasii, in
Prinoe William Sound, Alakin.
Bull. U. S. Bur. P1sh., 47(9):283-293.
RUCKER. R. R.
1987 The ffeot of temperature on the growth of the embryo of oncor-
hynohus nerlen (阻lbaum).
A thosis submittod for the degree of Master of Soionce, Seattle,
Univarsity of Pashington. 54 pp .
8CPIDIT. J.
1817 I. Zoarose Fiviparus L. and looal races of the same.
Los Comptes-Rondus des Travaux du Laboratoire Carlsberg, 13(3):
279-396.

```
SCBMIDT,J.
    1919a Racial studies in fishes. II. Experimental investigations
        with Lobistos rotioulatus (Patars) Regan.
        Jo Genet.. 8(3),14.7-15S.
SCHMIDIP.J.
    1919b Racial gtudios in F1shes. III. Diallele orossings with trout
                            (Salmo trutta Lo)c
                J.Gonot.: 9(1):61-67.
SCEMIDN, J.
    1920 Raoial investigationso IV. Experimontal investigations with
        Zomrces \nablalviparous L.
        J. Genet., IO($):179-181.
SCEMCIDT. U.
    1921 Racial investigations. VI. Annual fluotuations of racial
                oharaoters in zoaroes viviparous.
                Las Comptes-Rendus des Travaux du Laboratoire Carlsberg, 14(15):
                24 pp.
SCHMIDT, J.
    1830 Racial investigations. X. The Atlantio Cod (Gadus callarias
                L.) and looal races of the smme.
                Les Comptes-Rendus des Travaux du Laboratoire Carlsberg, 18(6):
                        71 pp.
SCHULTZ, L. P.
    1931 Koy to the fishes of Washington and Oragon.
                        Seattle, University Bookstore. 63 pp.
SEATTLS WALESR WORKS DEPT.
    1963 Annual report of the Fater Department of the city of Seattle
                        for the year 1953. 64 pp.
SEYMOUR, A. H. and Jc R. Donaldson
    1953 00ourronce of high mortality among ohinook salmon fry after
                        the recharge of a oharocal filtor.
                        Progressivo Fish Culturist, 15(3):129-180.
SHELFORD, V. E.
    1927 An experimental investigation of the rolations of the codling
        moth to weather and olimatoo
                        Illinois Natural History Survey Bull., 16,311-440 (Art. 5).
SMITH, 3. H.
    1950 Upper Sacramento R1ver sport ilshery.
    U. S. Flsh Wildlife Servioe, Spocial Solentific Report: Fish-
    ories No. 34, 44 pp.
```

tintig, A. V.
1844 Experimonts on meristio and other oharaoters in fishes. I. On the influeno of temperature on some meristio oharacters in sea-trout and the fuotion period of these oharacters. Modd. Komen Havandus. Serie Fiskori, li(3):66 pp.

PRYNG, A. V.
1346 Stage of determination of vertebras in teleostean fishea. Nature (London), 157(3992):598-595.

TANIMO. A. V.
1950 Influence of the onvironent of number of vortobrae in teleostean fishes.
Nature (London), 165(4184):28.
TANING, A. V.
1952 Experimental study of meristic oharactera in fishes. Biol. Rev. Cambridge Phil. Soc., 27(2):169-193.

TESTER, A. L.
1938 Veriation in the mean vortebral oount of horring (Clupes pallasid) With wator tamperature.
J. Cona. Int. Explor. Mer ., 13(1):71-75.

THOMPSON. D'A. W.
1952 On growth and form.
2nd ed. (1942), reprinted 1952.
Cambridge, England, University Press: Vol. 1. 466 pp.
TOWNSEND, L. D.
1944 Variation in the zumber of pyloric oaeca and other numerical oharaoters in ohinook salmon and in trout. Copeia, 13

JWAROF. B. P.
1931 Inseots and slimate.
Trans. R. Ent. Soc. London, 79(1):1-247.
VLADYKOV, V. D.
1964 Taxonamio charaoters of the eastern North America ohars (Salvolinus and Criatovasier).
J. FIah. Research Board Can., 11(6):904-932.

VOUTE, A. D.
1988 Z. Angew. Entan., 22:1-25.
Cited from Davidson, 1944.
RALLICE, C.
1901 A method of recording ogg development, for use of fish oulturists.
U. S. Buroau of Figiorios, Meshington, D. Co Report of the Comulesioner of Fisheries for 1800, Doo. 452. pp. 187-194.

WEISEL, G. P.
1955 Variations in tha mumber of fin rays of two oyprinid fishes oorralated with natural water temperatureso Boology, 36(1):1-8.

WELANDER, A. D., ot al.
1948 The offeot of Rontgen rays on the embryos and larvac of the ohinook salmon. Growth, 12(3):203-242.

## VITA

Allyn Henry Seymour was borm in Seattle. Wast:Intion, on Aufust I, 1913. Fiis parents are Alphonse Sherwood Seymour and Velma Smith Se:mour.

He attended Ballard High School in Seatile and entered the University of Washingtion in 1932. The requirements for the degree of Bachelor of Science in Fishories were corpleted in December 1937.

Since 1937 he has worked with the International FYsheries Commission, the International Pacific Salmon Fisheries Commiasion and the Washinfion State Depariment of Fisheries. Employment with the Applied Fisheries Laboratory, University of Washinfton, becan in 1947 and has contimued to the present.


[^0]:    *Also includes a record of temperatures for other tributaries of the Columbia River

[^1]:    * Analysis by Seattle Water Department ** " " Applied Fisheries Laboratory

[^2]:    *k will be substituted for the a ueed by Bêlehrádek in ordor to be oonsistsnt with symbols used above。

[^3]:    * Nomenolature varies with authors but for consistency in this report

[^4]:    *brock trout, Salvelinus fontinalis; chinook, Oncorhynchus tshayyscha; masou, Oncorhynchus masou; rainbow, salmo gairdnerij; brown trout, Salmo trutta; Atlant ic salmon, Salmo galar; lake trout, Cristivomer namaycush; cutthroat, salmo clarkii; sockeje, Oncorhynchus nerka.
    **-changing temperatures
    ***C-constant temperatures
    \#h-data from hatchery records
    \#\#e-experimental data

[^5]:    * Incubated in water of low oxygen content

[^6]:    *Threshold temperatures from Table 10

[^7]:    Figure 22. Kadioéraih of a Chincok salmon Fingerling (x 3 )
    *The first caudal vertebra of a salmon is defined as the vertebra with a "sudden increase in lenth of the haemal spine." The first haemal spine is indeterminate as it is a minute process which gradually becomes loneer on succeeding vertebrae (clothier, 1950).

